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Summary 

Under atmospheric conditions, materials can be found in three different forms: solid, 
liquid, and gaseous. A fourth state, called supercritical, can be reached by tuning 
temperature and pressure above the critical point. The physical properties of 
supercritical fluids are intermediates between those of gases and liquids: high density, 
high diffusivity, low viscosity, and high solubilizing power. Such fluids can be referred 
to as compressible liquids or dense gases. 

The tunable properties of supercritical fluids are used in the extraction of hops and 
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various spices, for decaffeination of coffee, tea, and cocoa bean, as well as for milk fat 
fractionation or the analysis of wine aroma. Some other types of processes such as 
extrusion or water treatment are also based on supercritical fluids. 

Carbon dioxide is the substance most commonly used for supercritical processes 
because of its easy-to-reach critical temperature and pressure, its chemical stability, 
non-flammability, non-toxicity, low cost, stability under radioactive conditions, and the 
easy recovery of extracts. 

1. Introduction 

The unique solvent properties of supercritical fluids were first reported well over 100 
years ago in 1879 by Hannay and Hogarth, who measured the solubility of several 
inorganic salts in supercritical ethanol. However, in the 1980s and 1990s supercritical 
fluids have been used in several industrial processes, including decaffeination of coffee 
and tea, extraction of hop flavor for the beer industry, and extraction of lipids and 
aromas from plant material. Other applications of supercritical fluids include their use 
as solvents for synthesis in supercritical environments or as solvents for supercritical 
chromatography. 

2. Concepts of Supercritical Fluids 

A fluid is considered supercritical if it exists at conditions above its critical pressure and 
temperature. These critical values correspond to conditions in which condensation into a 
liquid or evaporation into a gas is no longer possible. These values can be easily 
visualized in the pressure and temperature projection of a phase diagram (Figure 1). 

 
Figure 1. Typical pressure–temperature projection of a phase diagram for a pure 

material 

The transition from a gas-liquid state to a supercritical form can be visualized by the 
disappearance of the meniscus between the two phases, as it becomes one phase. 

Supercritical fluids are used because of the unique properties of such substances. 
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Supercritical fluids diffuse faster and have a lower viscosity compared to liquids. Table 
1 shows the different physical properties of fluids in different states. 

The dissolution power of a fluid is directly related to its overall solvation energy, which 
is determined by the sum of the solute–solvent interactions. As shown in Table 1, the 
density of supercritical fluids is about three orders of magnitude greater than that of gas; 
therefore, the dissolving power is increased for supercritical fluids, because as density 
increases more solute–solvent interactions will occur. Since supercritical fluids have 
great dissolving power, they are used in a number of ways for purification, extraction, 
fractionation, and recrystallization of a wide host of materials. In the future, new 
applications will probably be developed for supercritical fluids, in which case their use 
will likely become more common in new and existing industrial processes. 

State of fluid Density  [g/cm3] Diffusivity [cm2/sec] Viscosity [g/cm*sec] 
Gas 
P = 1 atm, T = 15-30°C 

 
(0.6-2)*10-3 

 
0.1-0.4 

 
(1-3)*10-4 

Liquid 
P = 1 atm. T = 15-30°C 

 
0.6-1.6 

 
(0.2-2)*10-5 

 
(0.2-3)*10-2 

Supercritical 
P = Pc, T = Tc 
P = 4Pc, T = Tc 

 
0.2-0.5 
0.4-0.9 

 
0.7*10-3 
0.2*10-3 

 
(1-3)*10-4 
(3-9)*10-4 

 
Table 1. Order-of-magnitude comparison of the properties of fluids as a function of their 

state 

A list of selected supercritical fluids is given in Table 2. The supercritical fluids most 
commonly used are carbon dioxide, ethane, ethene, propane, ammonia, and water. 
However, carbon dioxide is preferred because of its convenient critical temperature, 
cost, chemical stability, non-flammability, stability in radioactive applications, and non-
toxicity. Disposal of carbon dioxide is more environmentally friendly than for most 
other organic solvents typically used in extraction processes. It can be obtained in large 
quantities as a byproduct of several reactions, such as fermentation, combustion, and 
ammonia synthesis. 

Another advantage of using supercritical CO2 is that once the extract returns to standard 
conditions of pressure and temperature, the CO2 returns to a gas phase and the extracted 
product precipitates since it is no longer soluble in the gas. Therefore, there is no need 
for an additional separation step, as in the case of other solvents used in the food 
industry. 

Substance Tc [K] Pc [MPa] Critical density [g/cm3] 
Methane 190.6 4.60 0.162 
Ethylene 282.4 5.03 0.218 
Chlorotrifluoromethane 302.0 3.92 0.579 
Carbon dioxide 304.2 7.38 0.468 
Ethane 305.4 4.88 0.203 
Propylene 365.0 4.62 0.233 
Propane 369.8 4.24 0.217 
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Ammonia 405.6 11.30 0.235 
Diethyl ether 467.7 3.64 0.265 
n-Pentane 469.6 3.37 0.237 
Acetone 508.1 4.70 0.278 
Methanol 512.6 8.09 0.272 
Benzene 562.1 4.89 0.302 
Toluene 591.7 4.11 0.292 
Pyridine 620.0 5.63 0.312 
Water 647.3 22.00 0.322 
Xenon 289.7 5.84 1.113 

 
Table 2. Selected supercritical fluids and their supercritical properties 

 

Applications using these fluids include: extraction of carbonaceous material using 
supercritical ammonia; removal of polychlorinated dibenzodioxins, polychlorinated 
dibenzofurans, and stickies from fibers using supercritical propane; and reacting 
aromatic polyester with supercritical methanol to provide dimethyl aromatic dihydric 
carboxylic acid and dihydric alcohol. 

In order to increase the solubility of polar compounds in a non-polar supercritical fluid a 
co-solvent, or entrainer, can be used. This increases the polarity of the supercritical fluid 
and therefore increases the interaction between the solute and the solvent. Typical co-
solvents are generally used in proportions from 1 to 10 percent. Selected co-solvents 
include acetone, hexane, octane, methanol, ethanol, 1-propanol, and 2-propanol. 

The effects of non-polar co-solvents for solubility enhancement in supercritical CO2 
have been studied. Since carbon dioxide has low polarizability, the solubility of 
hydrocarbons is limited, but by adding small amounts of alkane co-solvent it was 
possible to enhance their solubility significantly. Among the co-solvents tested were 
pentane, octane, and undecane. Using octane, investigators were able to increase the 
phenanthrene solubility up to five times. 

Solubility values can also be predicted using equations of state. For a system containing 
more than two components, mixing rules are introduced that take into account the 
interactions between the different components. A good review of the fundamental 
principles of supercritical fluids was written in 1986. 

Modeling of lipid solubility has been studied in numerous publications. One research 
team described a model to compute the solubility values of fatty acids and triglycerides, 
either pure or in mixture. Three fatty acids and their corresponding triglycerides were 
used: lauric acid, myristic acid, palmitic acid, trilaurin, trimyristin, and tripalmitin. 

3. Solubility Measurement Techniques 

In order to set up a process for supercritical extraction of a raw material the first step is 
to measure its solubility in supercritical fluid. There are two commonly used approaches: 
using a dynamic or flow-through system or using a static or recirculation system. 
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