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Summary 
 
Nowadays, many researchers are working on membrane development, either for 
membrane water treatment or membrane gas separation. Many of them are attempting to 
find the cause and affect relationship between membrane fabrication-membrane 
morphology-membrane performances. The ultimate goal of the research is to provide a 
rational guideline for membrane fabrication conditions to achieve some specific 
membrane morphology, which enables the desired separation performance. For this 
reason, membrane morphology characterization is one of the indispensable components 
of membrane research.  
 
Membrane manufacturers should also specify the membranes they provide by various 
characterization parameters such as pore size and pore size distributions and solute and 
particle rejections. By knowing these parameters, membrane users are able to choose 
conveniently those membranes that satisfy their requirements and to decide the 
conditions under which the membranes are used. It is needless to say that the ideal 
characterization method should be non-destructive, accurate, and repeatable and fast and 
also should give a maximum possible number of data. To this end, many methods have 
been devised. 
 
This chapter focuses on the methods to characterize membranes for pressure driven 
processes such as reverse osmosis, nano-filtration, ultrafiltration, microfiltration, 
membrane gas and vapor separation, pervaporation etc. The examples shown in the 
article are mostly for the characterization of synthetic polymeric membranes but the 
applications of the methods are not necessarily limited to those. 
Even though there are many characterization methods available, they are generally 
classified into the following categories 
 
• Conventional physical methods to determine pore size and pore size distribution 
• Micrographic methods to have photographical images 
• Spectroscopic methods to know the membrane structure in its molecular level 
• Methods to obtain bulk properties of membranes such as thermal and mechanical 

properties  
• Other methods such as contact angle and zeta potential measurement 
 
In this chapter, attempts are made to show principles and examples for each method. 
 
1. Introduction 
 
The development of asymmetric membranes for seawater desalination with a thin 
selective layer supported by a porous layer opened up a new avenue in membrane 
separation technology by Loeb and Sourirajan during the nineteen sixties [1]. Over the 
past 50 years membrane separation technology has grown into an annual several billion-
dollar industry world wide. There are a number of membrane separation processes 
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currently being used. Typical examples are: reverse osmosis (RO), microfiltration (MF), 
nanofiltration (NF), ultrafiltration (UF), forward osmosis (FO), pervaporation (PV), 
vapor separation (VP), membrane gas separation and membrane distillation.(MD).  
 
Nowadays, many researchers are working on membrane development, either for 
membrane water treatment or membrane gas separation, and all of them attempt to find 
the cause and affect relationship between membrane fabrication-membrane 
morphology-membrane performances. The ultimate goal of the research is to be able to 
choose fabrication conditions to achieve membrane morphology, which is designed to 
enable the desired separation performance. In this regard, membrane morphology 
characterization is one of indispensable components of membrane research. 
 
There are a number of methods to specify the membrane morphology. The classical way 
of characterizing the membrane is to determine pore size and pore size distribution of 
the membrane. The pore sizes determined by different methods do not necessarily agree 
with each other but they usually show some common trends. Currently, with the 
advancement of sophisticated physical instrument, researchers tend to identify the 
environment of the permeating molecules more on a molecular level. As the digital 
quantification of the instrument progresses in sub-nano scale, the difference between 
measurement of pore size and specification of the segmental distance in 
macromolecules is disappearing. In other words, the measurement of sub-nano scale 
pore size is generally accepted. 
 
Another important trend in membrane characterization is that emphasis is more on the 
characterization of membrane surface morphology. It is in a way natural since 
membrane separation is fundamentally the reflection of surface phenomena, as 
manifested by the structure of integrally skinned asymmetric membranes and thin-film 
composite membranes. This trend has also been enhanced by the advancement of 
modern physical instrument such as atomic force microscopy (AFM) and X-ray 
photoelectron microscopy (XPS). 
 
Yet, characterization of bulk membrane properties by conventional methods should not 
be ignored. The thermal, mechanical and chemical properties are examples of those. 
 
The objective of this chapter is to make a comprehensive overview of different 
membrane characterization methods. For each method, the principle, instrumental 
method and examples that are particularly relevant to the membrane characterization are 
shown.  
 
2. Pore Size Distribution Measurement 
 
2.1. Bubble Gas Transport Method 
 
This method is based on the measurement of the pressure necessary to blow air through 
a water-filled porous membrane [2]. The method so developed has been thoroughly 
used to characterize membranes and also is called the bubble point method. This method 
is only able to discriminate maximum pore size present in the pore distribution, 
corresponding to the minimum pressure necessary to blow the firstly observed air 
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bubble.  
 
Figure 1 shows a schematic drawing of the test apparatus and the principle of the 
bubble-point method is depicted schematically in Figure 2, from which it can be seen 
that the liquid on the top of the membrane wets the latter. The bottom of the membrane 
is in contact with air and the air pressure is gradually increased until bubbles of air 
penetrate through the membrane at a certain pressure. 
 

 
 

Figure1. Schematic drawing of a bubble-point test apparatus 
 

 
 

Figure2. The principle of the bubble-point method 
 
An air bubble will penetrate through a pore of radius Pr  when the transmembrane 
pressure difference   1 2P P PΔ = −  given by the following Laplace equation is reached. 
 

2 cos
Pr P

γ θ
=

Δ
         (1) 

 
In Eq. (1), γ is the surface tension at the liquid/air interface and θ  is the contact angle. 
When a commercial wetting fluid GalwickTM (Porous Materials Inc. USA) is used, the 
pore is wetted spontaneously and the contact angle of 0o can be assumed. The surface 
tension of the liquid is 15.9 x 10-3 N/m.  
 
When o0θ = , the Laplace equation is reduced to  
 

p
2r

P
γ

=
Δ

         (2) 

 
which is called Cantor’s equation. 
 
Penetration will first occur through the largest pores and since the pressure difference is 
known, the pore radius can be calculated from Eq. (1). It is also possible to obtain pore 
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size distribution by performing this technique by a stepwise increase of pressure. This 
will be explained later on as permporometry. 
 
Using water as wetting fluid, the pressure that corresponds to the pore radius of 0.01 µm, 
will become 145 bar because the surface tension of water is as high as 72.3 x 10-3 N/m 
(and assuming 0o contact angle). To avoid these high pressures, Bechhold [3] and Erbe 
[4] used two different liquids, instead of an air-liquid interface, reducing appreciably the 
surface tension. For example, using isobutyl alcohol-water interface, the measurement 
of pore sizes 40 times lowers is achieved, as compared with air-water interface. (This 
method is explained more in detail as liquid displacement method later on.) The method 
has been improved for both liquid-gas interfaces [5], and liquid-liquid ones [6], 
allowing the evaluation of pore sizes corresponding to a range of porous material, and is 
very well commercialized. The bubble point method is an easy, fast and inexpensive 
method to determine the maximum pore size and pore size distribution of membranes. 
 
2.2. Mercury Intrusion Porosimetry 
 
Mercury intrusion porosimetry is used extensively for the characterization of various 
aspects of porous media, including porous membranes and powders. Mercury 
porosimetry is applicable to pores from 30 Ǻ up to 900 Ǻ in diameters. It is well 
commercialized. Mercury intrusion porosimetry involves placing the sample in a special 
sample cup (penetrometer), surrounding the sample with mercury. Mercury is a non-
wetting liquid to most materials and resists entering voids, doing so only when pressure 
is applied. The pressure at which mercury enters a pore is inversely proportional to the 
size of the opening to the void. As mercury is forced to enter pores within the sample 
material, it is depleted from a capillary stem reservoir connected to the sample cup. The 
incremental volume depleted after each pressure change is determined by measuring the 
change in capacitance of the stem. This intrusion volume is recorded with the 
corresponding pressure or pore size. By this technique, both pore size and pore size 
distribution can be determined. 
 
The relationship of pressure and pore size is given by the Laplace equation (1). As 
mercury does not wet the membrane (since its contact angle is greater than 90o and 
cosθ  will have a negative value), Eq. (1) is modified as follows: 
 

p
2 cosr

P
γ θ

= −         (3) 

 
The contact angle of mercury with polymeric material is often 141.3o and the surface 
tension at the Hg/air interface is 0.48 N/m. Hence Eq. (3) will be 
 

p
7492r

P
=          (4) 

 
where pr  is expressed in nm and P in bar. 
 
Since the volume of mercury can be determined very accurately, pore size distributions 
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can be determined quite precisely. In Eq. (4), it is assumed that the membranes have 
capillary pores. As in general, it is not always right, morphology constant must be 
introduced. Furthermore, very high pressures should be avoided since these may 
damage the porous structure and lead to an erroneous pore size distribution.  
 
Figure 3 gives a schematic drawing of the results of mercury intrusion experiment.  
 

 
 

Figure. 3 Cumulative volumes ( cumV ) as a function of the applied pressure 
 
There are few disadvantages of this technique: i) it is expensive and not widely used. ii) 
it needs high pressure which could damage the surface, and iii) it measures all the pores 
present in the structure, including dead end pores. 
 
2.3. Adsorption-Desorption Method (Barett-Joyner-Halenda (BJH) Method) [7] 
 
Gas adsorption is a popular and commonly used method for characterization of surface 
and structural properties of porous materials allowing the determination of their surface 
area, pore volume, pore size distribution and adsorption energy distribution. Nitrogen is 
often used for the adsorbent gas but other adsorbents such as argon and benzene are also 
used. According to this method adsorption-isotherm (amount of adsorbed gas versus 
relative pressure (pressure/saturation vapor pressure of the adsorbent)) is drawn and the 
data are analyzed by assuming capillary condensation.  
 
The vapor pressure, p , of the adsorbent liquid in the pore of radius pr  is given by the 
following Kelvin equation, 
 

0 p

2ln cosp V
p r RT

γ θ= −         (5) 

 
where 0p  is the saturation vapor pressure, γ  is the surface tension of the adsorbent 
liquid, V is the molar volume of the adsorbent liquid, R is the universal gas constant, 
T is absolute temperature and θ  is the contact angle. Assuming o0θ = , the above 
equation becomes for the liquid nitrogen,  
 

p

0

4.1

log
r p

p

= −          (6) 
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Assuming further all the pores whose radii are smaller than pr  are filled at a given 
relative pressure 0p p , the cumulative pore volume curve versus pr  can be drawn. 
Often, the thickness of adsorbed layer t is added to pr  obtain above to calculate more 
precise pore radius.  
 
In reality, the sorption-desorption curves are different due to hysteresis, depending on 
the pore structure. During analysis it is necessary to decide which branch of the 
isotherm to use, the adsorption or desorption branch. BJH method was modified by 
Kruk and Jaroniec in 2000 [8]. This method also is well documented in literature and 
university text books [2] and well commercialized. 
 
2.4. Gas Liquid Equilibrium Method (Permporometry) 
 
This method is based on the phenomenon of capillary condensation of liquids in 
micropores, which is the basis of one of the most popular methods for the 
characterization of the pore size distribution in porous media. Permporometry is the 
only method known so far [9] suitable for the determination of size distribution of the 
active pores with diameters ranging from about 1.5 nm to 0.1 µm in porous media, 
particularly those with an asymmetric and/or composite structure. This method is 
relatively new technique, is based on the controlled blocking of the pores by capillary 
condensation and simultaneous measurement of the gas diffusion flux through the 
remaining open pores. There are two different approaches of the method [10]. 
 
2.4.1. Liquid Displacement Permporometry (LDP) [11]  
 
The liquid displacement method is commonly used to determine pore sizes and pore 
size distributions of a membrane because it is close to (ultra)filtration practice: dead-end 
pores are not evaluated; the membrane is characterized in wet conditions; in addition the 
pressure is kept as low as possible and thus no alteration of the membrane occurs [12].  
 
This method was first described by Erbe [4] and Kesting [13] and further developed by 
Capannelli et al. [11, 14]. It is based on the measurement of the flux of a displacing 
liquid through the membrane as a function of the pressure applied. Thus, this method is 
similar to the bubble point method but a liquid in the pore is displaced by another liquid 
instead of gas. From the flux-pressure curve the pore size distribution is calculated using 
the Hagen-Poiseuille equation. Following assumptions are used for the calculation of 
pore size distribution. 
 
a. The pores are cylindrical. 
b. The pores are parallel to each other and not interconnected and thus are straight 

through the whole membrane layer. 
c. The pores all have length l , where l  is usually taken to be the thickness of the 

membrane (or thickness of the membrane skin layer in the case of an asymmetric 
membrane). 

 
With assumption A and B, pore density function p( )N r  can be calculated from the 
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increase in the measured flux ( sdϕ ) upon the increase in transmembrane pressure 
( d PΔ ) using the following Hagen-Poiseuille equation. 
 

s
p 4

p

8( ) dlN r
r d P

ϕη
π

=
Δ

        (7) 

 
where η is the viscosity of the displacing liquid. If l  is not known, a relative pore size 
distribution can be calculated.  
 
The results obtained by the liquid displacement become incorrect if the pores are 
connected to each other or if there is a resistance against flow in membrane sub-layer or 
in the measurement apparatus. As a result of the additional resistance, the estimated 
pore size distribution shifts toward smaller pores and a larger number of pores. To 
overcome this, two methods have been suggested by Gijsbertsen-Abrahamse et al. [15]: 
either by estimating the sub-layer resistance by determining the number of active pores 
or by repeated measurement of the flux-pressure curves with different levels of 
coverage of the membrane surface. 
 
2.4.2. Diffusional Permoporometry (DP) [17]  
 
Diffusional permoporometry (DP) was first used by Katz [16, 17]. Later on, refinements 
to the technique have been suggested by many authors [9, 10, 18]. In this method, the 
Kelvin equation given in Section 1.3 is used combined with the diffusive vapor 
transport through the open pores. The measurement starts from the relative vapor 
pressure 0 1p p = , where all the pores are filled with liquid and the vapor transport is 
impossible. By reducing the vapor pressure progressively, more pores will be emptied 
and become available for vapor transport. Thus, measuring vapor flow rates at 
progressively decreasing vapor pressures, pore size distribution can be obtained. 
In this method, a fluid “A”, which completely wets the membrane, is used to fill the 
pores. A second fluid “B” (gas), immiscible in the “A”, is then permeated through the 
membrane. The permeate flow rate is measured at various transmembrane pressures. 
Thus, this is an extension of the bubble point method.  
 
Again the pore size and the transmembrane pressure difference are related to each other 
by Cantor’s equation. Again the Hagen-Poiseuille equation is used to calculate the pore 
density function.  
 
- 
- 
- 
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