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Summary 
 
The chapter deals with the performance of photothermal multicolor and omnicolor 
converters in the Solar System. The case of four-color photothermal converters is also 
considered. Both interplanetary power stations and power systems placed on the surface 
of different planets are analyzed. The power stations consist of a multicolor converter – 
endoreversible thermal engine combination. In case of ground based planetary stations 
the thermal engine is assumed to be of the Chambadal-Novikov-Curzon-Ahlborn type. 
The interplanetary stations, which are characterized by a nonlinear heat transfer between 
the engine and the environment, are treated by using a simple model. The influence of 
the radiation concentration on the system performance is outlined. The effect of the sun 
zenith angle is also discussed. Spectral distributions of the collector and radiator 
optimum temperatures are shown. 
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1. Introduction 
 
Several early studies have identified a series of advanced space missions that need 
versatile, high-capacity space power systems (Angelo and Buden, 1986; NASA, 1989). 
These missions include manned planetary outposts and bases for sustained operations 
(hundreds of kW to MW power levels), and interplanetary cargo vehicles with 
requirements in the 2-5 MW power range (Angelo and Buden, 1991). It is expected that 
the development of humanity's extraterrestrial civilization and the full and complete 
exploration of our Solar System will be accompanied by the extensive use of 
progressively more sophisticated space power systems (Angelo and Buden, 1991). Solar 
radiation is, of course, one of the main candidates as an energy source for advanced 
space missions, while the omnicolor solar converters, which will be studied in this 
chapter, are perhaps the highest technology we could envisage in this area. Presently, 
there are two major types of solar power system used in space missions. The first type 
uses photovoltaic cells to convert the solar radiation directly into electrical energy, in 
combination with electrochemical storage. The second type is the so called “dynamic” 
system, in which solar concentrators reflect the flux of solar radiation towards a 
collector where a working fluid is heated up to drive conventional thermal engines. 
Electrical energy could then be generated by alternators coupled to these engines. Both 
types of solar power system will be considered in this chapter.  
 
2. Omnicolor Photothermal and Photovoltaic Converters 
 
Various authors have proposed different ways to convert solar energy into useful work. 
In the case of photovoltaic conversion, Shockley and Queisser (1961) treated a single 
cell (i.e. consisting of a single gap semiconductor). They have calculated a 
thermodynamic efficiency limit of 30% for such a cell. However, it has been soon 
realized that the use of a system involving more than one energy gap should enable to 
produce solar cells having much higher efficiencies.  
 
It is believed that the highest efficiency can be realized by an infinite stack of p-n 
junctions with smoothly varying band gaps from infinity to zero, such that there is a 
single junction adapted to each frequency in the solar spectrum. In the system proposed 
by De Vos (1980) all individual cells are selective black bodies such that the photons of 
frequency ν  of the solar spectrum are completely absorbed by the cell with bandgap 

gE hν= . Such a system is denoted as a “fully selective” or “omnicolor” photovoltaic 
converter. Useful approximations for their mathematical treatment were proposed 
subsequently by Grosjean and De Vos (1981). A small error in the model was corrected 
by De Vos and Pauwels (1981) and Pauwels and De Vos (1981) who outlined a simple 
relation between the Carnot efficiency of thermodynamic engines and photovoltaic 
energy conversion. A new improvement of the model was performed by De Vos and 
Vyncke (1983) who introduced the influence of the ambient radiation and proved that 
both photovoltaic and photothermal “omnicolor converters” (a denomination which they 
proposed) have the same maximum efficiency. The influence of radiation concentration 
on the efficiency of omnicolor converters was studied by Haught (1984). Note that the 
geometric factors affecting the ambient radiation incident on the collector have to be 
corrected in that paper. However, this error has little influence on the results. Some of 
the above papers were reviewed in two books (Sizmann, 1990; De Vos, 1992). 
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This chapter provides an introduction to the thermodynamics of photothermal (PT) and 
photovoltaic (PV) omnicolor converters (Badescu and Dinu, 1995). A unifying 
approach is also presented (Badescu, 2017). 
 
Usage of highly (or even fully) selective collectors is more attractive for cosmic 
applications than for Earth applications. Indeed, the risks and lack of chance to correct 
possible damage during space missions require the usage of the most sophisticated 
human technologies. From this point of view multi-junction cells are serious candidates 
(Toussaint, 1991; Verie et al., 1991). This chapter deals with the performance of 
omnicolor converters in the Solar System. Both photothermal and photovoltaic 
converters are envisaged. Our analysis refers, on one hand, to interplanetary space 
power stations and, on the other hand, to power systems placed on the surfaces of 
different planets. The influence of radiation concentration on system performance is 
outlined for some cases of practical interest. The effect of the radiation incidence angle 
is also discussed. Spectral distributions of the thermal collector optimum temperature 
and photovoltaic cell optimum voltage have been presented for the first time by 
Badescu (1995). 

 
2.1. Omnicolor Photothermal Converters 
 
The maximum conversion efficiency with a thermal system is obtained, in the limit, 
with an infinite collector array, as shown in Figure 2. Each radiation splitter selects from 
the (concentrated) radiation spectrum the photons from a narrow band of width dν  
around a given frequency ν  used to heat a collector that absorbs and emits around that 
frequency. This collector has a temperature ( )cT ν  and its absorptance ( )α ν  is 
supposed to be given by 
 

 
[ ]1 for / 2, / 2

( )
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d dν ν ν ν ν
α ν
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The spectral irradiance ϕ  from a source of blackbody radiation at temperature T  may 
be written in the form: 
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where B  is the geometric factor and 
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is Planck‘s distribution. 
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Figure 2. Omnicolor PT converter.  
 

The net thermal flux 1( )Q ν supplied by the collector of surface area A  at temperature 

( )cT ν  toward its accompanying heat engine is supposed to be given by 
 
 ( )1 s s a a c c( ) / ( , ) ( , ) ,Q A T T Tν φ ν φ ν φ ν ν= + − ⎡ ⎤⎣ ⎦ , (4) 
 
where the subscripts s, a, and c refer to the Sun, ambient, and collector, respectively. 
The first two terms from the right-hand side of Eq. (4) represent the incident solar and 
ambient radiation, respectively, while the last term is the flux of radiation emitted by the 
collector. In a first approximation, the Sun can be considered as a source of isotropic 
radiation. In this case, 5760 KT ≈ .  Figure 1 illustrates the gemometry of local setup 
and of the location of the collector on the planet with reference to the Sun.  
 
The following equation applies for the geometric factor of the Sun: 
 
 ( ) ( )2

s s 0 s 0, cosB bθ π θΩ = Ω , (5) 
 
where: 
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Figure 1. Geometry of the local setup and of the location of the collector on the planet 
with reference to the Sun 

 
Here, sΩ  is the solid angle subtended by the Sun when viewed from the receiving 
surface, while 0θ  is the angle between the normal of the receiving surface and the 
direction to the center of the solar disc (i.e., the Sun’s zenith angle). Also, δ  is the half-
angle of the cone subtended by the Sun. Equation (5) can be used only when the 
following condition is fulfilled, 
 
 0 / 2θ δ π+ ≤ ,  (7) 
 
that is, when the sun is completely visible. 
 
When unconcentrated direct solar radiation is considered, the solid angle sΩ   subtended 
by the Sun  can be computed by Eq. (6), by taking into account the simple geometrical 
relationship ( )1

stan /R dδ −=  where ( )5
s 6.9599 10 kmR ≈ ⋅  is the Sun's radius and d  is 

the distance of the Sun from the earth) as viewed from the collector. (The sun is seen 
from the earth at an average angular diameter of 0.5334 degrees or 39.310 10−× radians. 
The solid angle subtended by a cone with an apex angle 2δ , ( )2 1 cosπ δΩ = −  

= 56.807 10−×  steradians or 0.000542% or 5.42 ppm.)  (Figure 1) . In the case of 
concentrated radiation, first we observe that in the presence of the concentrator, the Sun 
is viewed from the collector surface as having an enlarged solid angle (say cΩ ). The 
concentration ratio C  is naturally defined as (Landsberg and Baruch, 1989): 
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that is, the ratio between the geometric factors of the concentrated and the 
nonconcentrated radiation, respectively, both evaluated at normal incidence ( 0 0θ = ). 
By using Eqs (5-8), one obtains 
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4
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π
π
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. (9) 

 
Consequently, for a given distance to the sun and concentration ratio C , Eq. (9) can be 
used to compute the enlarged solid angle cΩ . Then, the energy flux density ( )s s,Tϕ ν  
can be evaluated by means of Eq. (2). The geometric factor aB  of the ambient radiation 
flux is given by Landsberg and Baruch (1989): 
 
 a sB Bπ= − . (10) 
 
Note that Eq. (10) is rigorous in the case of concentrated solar radiation, when the 
concentrator mirror covers part of the celestial vault (Badescu, 1992). However, this 
equation is a very good approximation in the case of unconcentrated radiation too, 
because of the negligible value which B has in this case (at the mean Earth–Sun 
distance  5

s 6.83 10B −≈ × ). Equation (10) was accepted by several authors (De Vos and 
Vyncke, 1983; Haught, 1984). Haught (1984) adopted the following assumption: 

aB π= . We proved that each of the two hypotheses is valid under special circumstances 
(Badescu, 1992). Throughout this section, we accept Eq. (10) because Haught’s 
assumption aB π=  could lead to significant error for large values ofC . 
 
The collector is supposed to emit radiation toward the whole hemisphere ( 2πΩ = ); 
consequently, its geometric factor is ( )c 02 , 0B π θ πΩ = = = , as Eq. (5) shows. By using 

Eqs. (2), (3) and (10), we obtain the net thermal flux 1( )Q ν  entering the thermal engine 
working at frequencyν : 
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If we take into account Eq. (1), we see that this engine uses the energy of solar radiation 
in a narrow range around frequency ν  only. Of course, the neighboring engines use the 
radiation from other infinitesimal frequency intervals. In this section, the thermal 
engines are supposed to be of Carnot type. The power provided by the engine working 
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at frequency ν  is given by 1 Carnot( )Wd Q dν ν η ν= , where Carnotη  is Carnot efficiency. 
Consequently, the mechanical power totW supplied by the array of monochromatic 
converters (i.e., by the whole omnicolor converter) can be obtained by summing up the 
contributions of all thermal engines: 
 

 a
tot 1

c0 0

( ) ( ) 1
( )

TW W d Q dv
T

ν ν ν
ν

∞ ∞ ⎡ ⎤
= = −⎢ ⎥

⎣ ⎦
∫ ∫ . (12) 

 
Remember that 1( )Q ν is a function of ( )cT ν . The maximum power supply tot,maxW  can be 

obtained by optimizing the collector temperature ( )cT ν  for conversion of the radiation 
of frequency ν . Consequently, to obtain the maximum power we have to solve the 
following equation: 
 

 tot

c

0
( )

W
T ν
∂

=
∂

, (13) 

 
and then replace its root (say ( )c,optT ν ) in Eq. (11). The maximum efficiency of the 
omnicolor PT is simply given by 
 

 tot,max tot,max
PT,max

4s
ss

0

( )

W W
B Td

η
σφ ν ν π

∞≡ =

∫
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An omnicolor PT converter yields PT,max 0.868η = for terrestrial applications, and even 
higher efficiencies in case of some space applications (due to the lower environmental 
temperature). 
 

- 
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