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Summary 
 
This section deals with a review of the electrochemical behavior of metallic materials in 
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seawater, the formation of biological films and the effect of these films on the corrosion 
characteristics. 
 
As a background for the main sections, elementary electrochemical concepts of 
corrosion in aerated solutions are described at first, including potential - current density 
diagrams and the mechanism of crevice corrosion. 
 
The formation and growth of biofilms, macroorganisms and inorganic deposits, the 
effects of various conditions on film formation, and the biological content and activity 
of biofilms are summarized. Also some interactions between the biofilm and inorganic 
deposits produced under free corrosion or cathodic polarization are included. 
 
A brief presentation of corrosion behavior of various materials in seawater is given, 
with particular emphasis on biological effects. Materials dealt with are structural steels, 
copper and copper alloys, stainless steels, nickel alloys and titanium. 
 
The behavior of usually corrosion-resistant materials has been dealt with in more detail. 
Particularly the behavior of stainless steels is described with some comparison with 
copper and nickel alloys and titanium. The most critical effect of biofilms on stainless 
steels is the strong increase of cathodic efficiency, i.e. depolarization of the oxygen 
reduction reaction and the consequent ennoblement of the corrosion potential (open 
circuit potential) in natural seawater below 30 to 40°C. The relationship between the 
observed cathodic depolarization and the content of the biofilm as well as proposed 
mechanisms of the effect of the biofilm on the oxygen reduction are reviewed. 
 
This effect will in many instances increase the liability to crevice corrosion initiation, 
making steels like AISI 304 and 316 unsuitable for service in natural seawater 
environment. Because of the biologically induced cathodic depolarization, crevice 
corrosion rates are also strongly increased. Similar effects are found to various extents 
on galvanic corrosion rates on less noble materials, i.e. copper and copper alloys, steels 
and aluminum alloys, coupled to stainless steels or titanium. Moreover, the biofilm 
effect leads to higher current demand for cathodic protection of stainless steels. 
 
The most common method to prevent marine growth and biological effects on stainless 
steels in seawater is the use of chlorination. Various effects of chlorination are 
described in this context. Continuous chlorination results in a higher potential than in 
untreated seawater and increases the crevice corrosion initiation liability further. This 
can be avoided by intermittent chlorination, which is possible to control automatically 
by means of electrochemical monitoring. Stainless steels in chlorinated seawater can be 
effectively protected by resistor controlled cathodic protection (RCP). 
 
1. Introduction 
 
Seawater is commonly used as feed for desalination processes. Extensive use is made of 
stainless steels and copper base alloys in the intake systems and heat rejection sections 
of thermal processes such as Multi-Stage Flash and Multi-Effect Desalination. The 
content of this article is relevant to both natural and chlorinated seawater which provide 
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the corrosive environment in these parts of the process. Later in these processes, 
increases in temperature and deaeration destroy the bacterial activity, which the article 
describes, and provide a different and less corrosive environment (Todd, 1997). 
 
In the case of membrane processes such as reverse osmosis (RO), the seawater feed may 
be chlorinated but is not normally deaerated. Two types of membrane are in common 
use, namely cellulose acetate and polyamides. The latter is very sensitive to oxidants in 
the seawater and dechlorination is needed to avoid rapid membrane degradation. This 
can lead to biological fouling as microorganisms which are not destroyed by 
chlorination are able to colonize and grow on the membrane surface. Although no data 
are available for RO systems on the microorganisms which stimulate the cathodic 
reaction as described in this article, it would be prudent to assume that they also can 
grow in such systems and stimulate corrosion on stainless steels, which are normally 
used for high pressure components (Todd, 1997). 
 
For many engineering materials, seawater is known to be the most corrosive of all 
natural elements. The corrosivity depends on various factors. Of primary interest is the 
content of oxygen, since the dominating cathodic reaction in the corrosion process is the 
reduction of oxygen. This reduction reaction may be strongly affected by the presence 
of microorganisms, which therefore constitute one of the most important factors. The 
effects of the microorganisms are particularly strong on some materials which are 
usually considered as corrosion-resistant, such as conventional stainless steels, e.g. the 
AISI 304 and 316 types, and Ni-Cu-alloys. In some cases the effects may be rather 
dramatic, and lead to unpleasant and expensive surprises for users of these materials. 
 
Research carried out during the last two decades on stainless steels and other corrosion-
resistant materials in natural seawater has shown that the detrimental effects are due to 
the formation of a micro-biological film (a biofilm) on the surface. This film affects the 
local corrosion initiation tendency as well as the propagation rate at temperatures below 
30-40°C. The effects of the biofilm depend much on other factors, particularly the 
existence of crevices and deposits on the surface, welds and the quality of welding, 
aeration, periods of exposure in seawater and flow conditions. 
 
In many cases the corrosion-resistant materials are in metallic contact with carbon steel, 
which protects the more noble materials. The reason for the absence of corrosion on 
conventional stainless steels in such cases is not always understood. Therefore, for some 
seawater applications, conventional stainless steels may have a more positive reputation 
than what is reasonably based on their own properties. 
 
The growth of the biofilm is often prevented by chlorination. The tendency to initiation 
of local corrosion may increase by this treatment, but the propagation rate of corrosion 
is typically less in chlorinated than in natural seawater. 
 
Cu-alloys are strongly affected by the environmental conditions. Water velocity is 
important, and the alloys are sensitive to pollution of the water. Both these factors 
influence the microbial effects. 
 
The main objective of this article is to describe in detail the interactions between 
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biological activity and corrosion. The description makes use of corrosion theory 
concepts such as the relationship between electrode potential and electric currents, and 
the nature of pitting and crevice corrosion. A short review of the basic electrochemical 
concepts is therefore presented in the next section.  
 
2. Electrochemical Corrosion 
 
2.1. Electrochemical Corrosion of an Active Material in an Aerated Solution 
 
Figure 1 is a schematic picture of corrosion of a metal M in an aqueous solution 
containing oxygen (aerated). The corrosion process consists of an anodic and a cathodic 
reaction. The anodic reaction is oxidation of metal M to metal ions M2+ i.e. dissolution 
of metal, while the cathodic reaction is reduction of oxygen. There is always a transport 
of charge, an electric current through the interface between the metal and the solution at 
each of the electrodes (anode and cathode). This process creates an electric circuit 
without accumulation of charges anywhere. This means that the current passing the 
interface at the anode, the anodic current Ia, must equal the current at the cathode, the 
cathodic current Ic. 
 
The rate of current of each electrode reaction depends on the electrode potential. 
Usually this is expressed in a potential - log current-diagram (E vs. log I diagram) or a 
potential-log current density diagram (E vs. log i diagram). 

 
 

Figure 1. Wet (electrochemical) corrosion of a divalent metal M in an electrolyte 
containing oxygen. 

 
An E vs. log I diagram for the electrode reactions in Figure 1 is shown in Figure 2. An 
active metal is assumed in this case, i.e., the anodic reaction is not hindered by a 
passivating film on the surface. 
 
At the potential Eoa the reaction 
 

eMM 22 +⇔ +  
 
is in equilibrium, and the potential is named the equilibrium potential or the reversible 
potential of this reaction. The reversible potential is determined by the thermodynamics 
of the reaction. The oxidation rate of the reaction equals the reduction at this potential 
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value. This rate can be expressed in terms of current density, which is the exchange 
current density, generally denoted io, and in our case ioa. For a certain electrode area 
there is an exchange current Io. In the case shown in Figure 2 we have an exchange 
current Ioa as a basis for our anodic reaction. Similarly we have the equilibrium potential 
Eoc and the exchange current Ioc, for the oxygen reaction. When the electrode potential 
of the M/M2+ reaction is more positive than the equilibrium potential Eoa there is a net 
reaction rate in anodic direction, and this rate increases with increasing potential 
distance from the equilibrium. The total anodic current depends on the potential as 
shown by the lower curve, the anodic overvoltage curve. The overvoltage η at an 
arbitrary potential E is η = E - Eoa. 
 

 
 

Figure 2. Potential-log current diagram for an active metal corroding in an aerated 
aqueous solution. 

 
The cathodic reaction increases with decreasing potential (with increasingly negative 
potential) as illustrated by the upper curve, the cathodic overvoltage curve. 
 
As already mentioned, the anodic current must equal the cathodic current for a metal 
under free corrosion, Ia = Ic. If we assume that there is practically no ohmic potential 
drop between the anode and cathode, neither in the liquid nor in the metal, the electrode 
potentials at the anode and the cathode are equal too, i.e. Ea = Ec.  
 
These two conditions, Ia = Ic and Ea = Ec, are satisfied only at one point in Figure 2, 
namely at the intersection point between the anodic and the cathodic overvoltage curve. 
This point defines both the corrosion potential (open circuit potential, rest potential) 
Ecorr and the corrosion current Icorr. This is the so-called mixed potential theory, which 
is extremely important for the understanding of corrosion behaviour. 
 
If there is a potential drop ΔE in the electrolyte between the cathode and the anode, the 
mixed potential theory has to be modified, as illustrated by the dotted line in Figure 2. 
Now the anode potential aE ′  is more negative than the cathode potential 
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).(, EEEE acc Δ=′−′′  
 
The anodic and cathodic currents are still equal (= I′corr), but lower than in the case of no 
potential drop in the solution. 
 
The vertical part of the cathodic curve is caused by concentration polarization. Here, the 
cathodic reaction rate and the cathodic current are limited by the transport of oxygen to 
the electrode surface. Since the oxygen molecule has no electric charge, the oxygen 
transfer rate, and thus the cathodic current, is independent of the potential in this 
potential region. With the corrosion potential located to this region, mass transfer, or 
diffusion, of oxygen to the metal surface is the rate-determining step in the corrosion 
process. In other words, the corrosion rate is mass transfer controlled or diffusion 
controlled. 
 
2.2. Behaviour of Active - Passive Materials 
 
As mentioned above, the situation in Figure 2 represents corroding metals that are 
active in the whole potential range in question. However, as is well known, many of the 
corrosion-resistant materials, typically stainless steels, are passive due to an oxide film 
on the surface. This oxide film prevents the anodic reaction. The potential range where 
the metal or alloy is passive depends on several factors, of which pH, chloride 
concentration and temperature are of particular importance. Schematic anodic 
overvoltage curves for an active-passive material at different pH values and chloride 
concentrations are shown in Figure 3. In chloride solutions, pitting corrosion occurs 
when the potential is above a certain critical potential, the pitting potential Ep, which is 
characteristic for the actual material-environment combination. 
 

 
 

Figure 3. Schematic anodic overvoltage curves for an active-passive metal or alloy. 
Effects of pH and chloride concentration Ep = pitting potential. 

 
A pit is initiated as a result of very local breakdown of the oxide. Aggressive species 
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like Cl-ions play an important role in this process. They are adsorbed on the surface and 
assumed to penetrate the oxide, preferably at sites with oxide defects of weak points. 
Small anodes and pits are formed at these points. When a pit has been formed, it grows 
by a mechanism similar to that of crevice corrosion propagation (see next section). 
 
As a result of the reactions, the electrolyte in the pit becomes acidic and more 
aggressive, which in turn accelerates the corrosion process (autocatalytic process). 
 
In Figure 4 it is shown by anodic and cathodic overvoltage curves how a stable passive 
state (1) may be established in certain neutral solutions, while pitting may occur in a 
solution with higher Cl--concentration and/or lower pH, or possibly at a higher 
temperature (state 2). 

 
 

Figure 4. Anodic and cathodic overvoltage curves resulting in a stable passive state (1) 
in a neutral solution, and pitting (2) at lower pH and higher Cl- concentration. 

 
The experimentally determined pitting potential depends more or less on the test 
procedure. These data are therefore not exact corrosion characteristics, but they indicate 
the potential levels at which pitting can be expected. 
 
- 
- 
- 
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