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Summary 
 
The basic concepts for process diagnosis are outlined and the principal reported works 
using signed directed graph (SDG) are covered. A specific introduction to the subject is 
made focusing on the theoretical background needed for the application to thermal 
desalination processes. Artificial intelligence application and the computational 
implementation of a diagnosis system for complex desalination processes is considered. 
The final product is an expert system that uses fuzzy logic and blackboard architecture. 
 
1. Introduction 
 
Fault diagnosis is the problem of finding out the root causes of process faults. However, 
due to the complex dynamics existing in most chemical processes (i.e. time delay, 
complicated interconnection between mass, momentum and energy flows, and the high 
dimension involved) it is very difficult to detect and diagnose faults in a limited time. 
Moreover, even with the help of the computer, diagnosis and supervision are difficult 
tasks. 
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The set of all the symptoms caused by a fault is the pattern of this fault. Symptoms 
analysis can be done by checking if particular measurable variables are close to a certain 
tolerance to the normal value. If this check is not passed, a fault message is displayed. 
The functions up to this point are usually called monitoring or fault detection. This is 
followed by fault diagnosis: the fault is located and the fault origin is found. The next 
step is the fault evaluation, which means an assessment is made of how the fault will 
affect the process. After the effect of the fault is known, a decision (the action to be 
taken) can be made (Isermann 1984). 
Generally, the diagnosis methodologies are based on the following strategy: first, 
appropriate measurements are made, the results of which are termed measurement 
space. The measurements can be represented as a vector in which the elements: X1, X2, 
…, Xn represent numerical values (measured process variables). A computer-data 
acquisition system must be connected to the process. A statistical procedure checks if 
they are normal or faulty values comparing them with a predetermined normal range for 
each variable. In this way, qualitative values can be assigned to each component - 
measured or estimated variables - determining the State Vector (SV). Possible values 
for SVj are (+1), higher than the normal value, (-1), lower than the normal value, and 
(0), normal value. The SV changes according to the evolution of the measured variables. 
 
The analysis of the system is done by monitoring a set of process variables - which can 
be measured - but this "measured space" is not complete. Thus, the resolution for the 
diagnosis procedure is limited. Generally, it is common to find a set of faults that 
corresponds to the same observed pattern. This set of faults is defined as a cluster of 
faults corresponding to this pattern. Then, to individualize the actual fault from the 
cluster, more resolution must be achieved using knowledge of the process, the operator 
expertise, etc. 
 
2. Model Based Approaches. Qualitative vs Quantitative Approaches 
 
There have been developed different strategies to carry out the diagnosis process, such 
as quantitative algorithms (Isermann 1984), fault tree methods (Lapp and Powers 1977), 
qualitative model approach like directed signed graphs (Iri et al. 1979), expert system 
based approach (Kramer 1987), statistical pattern recognition strategies (Kvalhein 
1988), and more recently, neural network approach (Venkatasubramanian et al. 1990). 
In general, these methodologies can be divided in empirical and model based 
approaches. The first, are based on the expertise; that is, the expert knowledge of the 
process, while the latter are based on a process model. Again, we can divide process 
modeling in quantitative and qualitative approaches. 
 
For large real scale plants like desalination processes, it is very important for the 
diagnosis implementation to take account of the specific advantages of each method. 
The model based approach is the best because it represents a structured knowledge 
about the processes. In fact, model based approaches are based on theoretical principles. 
Nevertheless, sometimes model building may be very difficult. Then, in these cases, it is 
necessary to use empirical knowledge, that is, expert knowledge. This kind of 
knowledge is lesser structured and may contain some mistakes. Besides, the result 
strongly depends on an adequate communication between the expert and a 
knowledgable engineer. 
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In general, the knowledge of expert operators is elaborated because they usually try to 
capture (not often successfully) the underlying causal structure of the plant behavior. As 
a result, expert interview is a complex task since knowledge obtained has to be analysed 
more deeply to discover the formal articulation of theoretical concepts and physical 
phenomena used by them. Thus, knowledge elicitation typically requires several cycles 
in which the expert operator is systematically guided through "abnormal" process 
scenarios and motivated to provide an explanation. In this way, tools of the Reliability 
Engineering like CCA (Cause and Consequence Analysis), HAZOP (HAZard and 
OPerability analysis) and FMEA (Failure Mode and Effect Analysis) can be applied 
(Himmelblau 1978; Henley and Kumamoto 1981). 
 
Clearly, the model approach must be used when possible. In this sense, there are two 
options to consider: quantitative and qualitative approach. Quantitative approaches 
involving filtering and estimation have been reviewed by Isermann (1984). Qualitative 
approaches involving fault trees and related diagrams have been reviewed by Lees 
(1983). Another qualitative approach, involving the signed directed graph (SDG), has 
been developed by O'Shima and coworkers (Iri et al. 1979; Shiozaki et al. 1985; Tsuge 
et al. 1985). 
 
Quantitative fault diagnosis algorithms use a rigorous process model and on-line 
measurements to back-calculate unmeasured process variables and model parameters. 
This kind of approach can accurately find out the sources of process upsets and the 
deviation size, but generally requires extensive engineering manpower and computation 
horsepower. In the last decade many approaches for variable estimation have been 
developed. However, the application of quantitative models for complex processes is 
often complicated by many characteristic problems, requiring a continual on-line 
examination of the validity of the underlying mathematical models, re-identification of 
the model parameters, and a repeated test for numerical stability of the employed 
algorithms (Isermann 1984). 
 
On the other hand, qualitative models are very successful in different applications in 
chemical processes. They have many advantages over the quantitative models: model 
building is easier, they are more generals, and time processing is lower. However, the 
cost of these advantages is the ambiguity. In fact, if a variable is affected by two 
opposite effects, the model information is not enought to detect which will be the 
dominant effect. 
 
Many qualitative models are based on the Signed Directed Graph (SDG). The seminal 
work in this area was the paper of Iri et al. (1979), in which an algorithm for fault 
diagnosis using SDGs was presented. Variations involving multiple time stages and 
delay times have been proposed by Umeda et al. (1980) and Tsuge et al. (1985). 
Kokawa et al. (1983) present an algorithm considering delays, gains, and fault 
propagation probability, but the method is limited to processes without feedbacks. 
 
3. Process Modeling using Signed Directed Graphs (SDGs) 
 
In a SDG each node represents the qualitative state of each variable (normal (0), high (+1) 
or low (-1)). Each arc represents the influence of one variable (initial node) on the other 
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(final node). The direct relation (both nodes changes in the same direction) is showing 
by (+1) gain, the inverse by (-1) and (0) shows no relationship. In other words, in a 
digraph the gain (Gij) corresponding to the arc from the node i to node j is a qualitative 
indicator of the net effect on j due to a perturbation on i. 
 
Considering the process mathematical model, which usually consists of ordinary 
differential equations and algebraic equations, generally rewritten in the following form: 
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The general expression for Gij given by Iri et al. (1979) is: 
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where the Sign function is used to obtain the qualitative values. For a survey of different 
methodologies for gain determinations see the work of Oyeleye and Kramer (1988). 
When the system is strongly nonlinear, some gains become a function of the state 
variable values, the perturbation size and the duration of it (Tarifa 1995; Tarifa and 
Scenna 1998). 
 
4. Diagnosis using SDGs 
 
Digraph-based methods are attractive because relatively little information is needed to 
set up the digraph and do the diagnosis. The SDG represents pathways of causality in 
the fault-free process. Nodes of the SDG correspond to state variables, alarm conditions, 
or failure origins. It is assumed that a single fault, which affects a single node in the 
SDG (the root node), is the source of all disturbances. It is also assumed that the fault 
does not alter other casual pathways in the digraph. The fundamental premise of digraph 
techniques is that cause and effect linkages must connect the fault origin to the observed 
symptoms of the fault. The diagnosis involves locating all possible disturbance sources 
(root nodes), given on-line sensor data. 
 
4.1. The Compilation of the SDG 
 
Kramer and Palowitch (1987) have pointed out that the SDG, derived as was suggested 
above, has certain limitations. In fact, in these algorithms, the correct diagnosis can only 
be guaranteed if each variable undergoes no more than one transition between 
qualitative states during fault propagation. This is because the SDG only represents the 
initial response to a given disturbance. In this way, when compensatory responses (CR), 
inverse responses (IR), noise, or out of order events (OOE) produce qualitative changes 
more than once during the fault propagation, a continuous causal pathway from the 
source node to each disturbed node may not exist. To solve this, the authors have stated 
the need to work only with the first change of each node. This means that if some 
variable has a CR or an IR, only the first observed qualitative value (first change) must 
be considered. In others words, it must be used a sort of snapshot capturing the first 
changes during the fault evolution. 
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The SDG compilation was the principal idea introduced by the Palowitch and Kramer 
work. Thus, in on-line mode only the compilated knowledge is used. Kramer and 
Palowitch have given a method to obtain a set of rules from the SDG. This set 
comprises one rule for each possible fault. 
 
Nevertheless, the CR-IR detection problem subsists. Rules are strongly sensitive to the 
symptom sequence (the order of detection). To overcome this situation, Oyeleye et al. 
(1990) introduced a new model based on the idea of events (transitions of qualitative 
states) instead of state variables. The whole idea was implemented by Finch et al. 
(1990) in MIDAS - model integrated diagnostic analysis system. Nevertheless, for 
industrial problems, the previous steps before the use of MIDAS (determination of IV 
and CV, building of the ESDG and the event model), are very time consuming (Rose 
1990). 
 
4.2. Fault Diagnosis using Qualitative Simulation 
 
As pointed out by Kramer and Palowitch, the diagnosis problem is the inverse or dual of 
a much simpler problem, namely that of fault modeling. Diagnosis uses a set of 
observed symptoms to generate a hypothesis, while dual modeling predicts the response 
of the plant, given the operating faulty state. The last problem is more easy to solve. 
 
Fault simulation using SDG implies the deduction of all the interpretations (directed 
trees branching from a given root node, considering only measured nodes). The 
simulation tree represents a prediction of the dominant pathways of fault propagation, 
and yields information about events' order (the sequence) and the deviation sign of each 
node connected to the fault origin (the fault pattern). Each simulation tree represents 
one set of routes from the root node to each causally connected node. For a given 
digraph and a given fault origin, there may be many interpretations of the fault 
propagation, but only one or a small set of these interpretations reflects the real behavior 
of the plant. Finally, Kramer and Palowitch (1987) remark that for practical cases it is a 
combinatorial explosive problem. 
 
In fact, the number of interpretations depends on the number of nodes where the fault 
propagation-pathway converges, and the number of control loops. The full set of 
interpretations comes from invoking all combinations of these choices. To avoid a 
combinatorial explosive problem, they propose an implicit representation of the 
combined interpretation set by making explicit the choices, instead of enumerating each 
interpretation. However, in this way an important part of the interpretation information 
is lost: the fault patterns. 
 
An alternative to eliminate the explosion risk is to avoid the use of fictitious arcs (for 
controllers, CV, and/or IV variables) and working, if it is necessary, with a part of the 
SDG. (Tarifa 1995; Tarifa and Scenna 1998) proposed a method that is based on the 
previous one proposed by Palowitch and Kramer (1987). Its main features are: 
 
• A set of rules is generated from the SDG. This is an off-line step, as in Kramer and 

Palowitch's algorithm. However, in this case it is not necessary to add new fictitious 
arcs for RV or IV variables. 
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• The incorporation of the fault to the model can modify the SDG. This fact allows the 
usage of more realistic process models. 

• For complex SDGs, the explosion is avoided limiting the searching process into the 
surroundings of the origin node (root node corresponding to the analysed fault). 

• An on-line expert system evaluates the set of rules by means of the process data and 
the use of fuzzy logic. The last tool enables to overcome the negative effects 
introduced by the spurious signals and the potential out-of-order detection of the 
first changes. 

 
Summarising, from this point of view, to build the expert system it is necessary to 
implement the fault modeling or qualitative simulation step, in which for each fault a 
new node is added to the SDG (which is build according to was pointed out previously). 
Afterwards, all the interpretations are generated by qualitative simulation. Finally, they 
are transformed in rules (compilation). There is one rule for each fault. These rules are 
simplified using logic calculus laws. They are transformed in production rules (IF-
THEN format). 
 
Formally, the rule set (RS) have the following form: 
 

1 2{ , , }NRRS R R R= ……  (3) 
 

{ }i i iR A C≡ ⇒  (4) 
 
So, RS is a set of rules Ri (corresponding each of them to a potential fault cluster of the 
system). Each rule has an antecedent Ai and a consequent Ci. This consequent represents 
the cluster (a set of faults characterized by the same fault pattern) assigned to this rule. 
The antecedent Ai is formed by two propositions: 
 

i i iA EZ NAZ= ∧  (5) 
 
where ∧ is the AND operator. 
 
The proposition EZi (explored zone) verifies the observed symptoms agreement with the 
expected state for the part of the SDG explored by the qualitative simulation. The 
second, NAZi (no affected zone), verify that the observed symptoms do not affect the 
part of the sub SDG that should not be affected by the fault (cluster Ci). 
 
On the other hand, EZi is true if at least one possible propagation route Ii,j 
(interpretations) is satisfied by the process data. That is: 
 

,1

iNI

i i jj
EZ I

=
= ∨  (6) 

 
where ∨ is the OR operator. 
 
While the NAZi must verify only one special interpretation (the subSDG non-affected by 
the fault): 
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i iNAZ Io=  (7) 
 
The verification of one propagation route (Iij in EZi - Eq. 6) implies that all its elements 
must be observed. In Iij two elements will be considered, as was pointed out above: 
 

, , ,i j i j i jI P S= ∧  (8) 
 
where Pij are patterns and Sij are sequences. 
 
On the other hand, patterns and sequences are defined as: 
 

, , ,1

NX

i j i j kk
P X

=
= ∧  (9) 

 

, , ,1

Nb

i j i j kk
S b

=
= ∧  (10) 

 
In this way, the pattern satisfaction implies that each variable evolves according to its 
expected value (indicated by the proposition Xi,j,k) and the sequence satisfaction implies 
that the sequence is verified in each arc (it is expressed by the proposition bi,j,k). These 
propositions are calculated by: 
 

0
, , , ,(d d )i j k k i j kX X X≡ =  (11) 

 
0

, , , ,(d d )i j k k i j kb b b≡ =  (12) 
 
where dXk are the qualitative values given by the detector module. The dbk values 
indicate the observed qualitative sequence of arcs (bk), (+1 if the sequence is right, and -
1 if it is inverse). dX0 and db0 are the qualitative simulation predictions for node values 
and arc sequences respectively. In other words, the evaluation is done by comparing the 
actual state of the process with the predicted one. 
 
Finally, the special interpretation Io is defined in the similar way; but considering that 
the qualitative predictions (dX0 and db0) belonging to NAZ are zero (non affected 
variables). Moreover, it is convenient to define a rule for the normal state of the process 
(#Normal). This rule is true if the process is operating normally. Here, the whole SDG is 
considered into the NAZ. 
 
4.3. The Use of Fuzzy Logic for Qualitative State Determination 
 
In general, fuzzy logic is used to deal with the problem of CR, IR, OOE and noise. 
Several works report the use of non Boolean logic (the Boolean logic uses only two 
values of truth: TRUE and FALSE) in fault diagnosis. For instance Dohnal (1983) uses 
fuzzy logic for the construction of CONFUCIUS (CONcentrated FUzzy CIcerone of 
USer) implemented in Pascal. Kramer (1987) presents a method that uses the violation 
and the satisfaction of the qualitative pattern generated by equation residues (Mah et al. 
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1976). It is proved that the fuzzy logic increment the stability and sensibility in presence 
of noise. Petti and Dhurjati (1991) also analyse the sensibility of the evidence on the 
diagnosis process. Yu and Lee (1991) combine quantitative and qualitative approach 
using digraphs presented by Chang and Yu (1990). Finally, the quantitative fuzzy set 
manipulation during diagnosis was introduced by Han et al. (1994). 
 
In the method proposed by (Tarifa and Scenna 1998) fuzzy logic is used to avoid the 
rigid evaluation of the causal order of events. In this way, OOEs are tolerated because 
only a smooth degradation is produced in the fault ranking. 
 
The detector mission is to transform the process measurements in qualitative values. It 
was pointed out in previous sections that it is not always easy to detect the first change. 
Fuzzy logic can be used to handle the difficulty associated with this problem. 
 
Fuzzy logic, proposed by Zadeh (1965), uses the concept of membership grade to 
express partial degrees of inclusion of items in sets. A fuzzy set X is a set of ordered 
pairs: 
 

{[ , ( )] / : [0,1]}x x x xX x x x U Uμ μ= ∈ ∧ →∈  (13) 
 
where μx(x) is a number comprised in the interval [0, 1] representing the grade of 
membership of x in X, with the ends of this interval representing no membership and 
full membership, respectively. 
 
Then, we can combine both ideas: The first change and fuzzy symptoms. To reach this 
goal, the detector must calculate the membership degree of the variables to the fuzzy 
sets High (+1), Normal (0) and Low (-1). ΔX (quantitative deviation of X) is the 
difference between the real value of X and its normal value. The value μNormal 
(membership degree) reflexes the pertaining degree of the value ΔX to a given fuzzy set 
Normal. μNormal = 1 means full pertaining to the set Normal, while μNormal = 0 means the 
opposite concept. In the same way μLow and μHigh can be defined. 
 
5. The Computational Implementation 
 
As was mentioned, the diagnosis system uses qualitative values. Thus, the detector 
module transforms quantitative information (the process data of measured variables) in 
fuzzy qualitative values (Dohnal 1983). Once an anomaly is detected, the diagnostic 
module is charged in the computer memory. 
 
- 
- 
- 
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