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1. Introduction 
 
There can be little doubt that, over the next few decades, there will be a very large 
increase in the human population of the earth, that per capita demand for water will 
increase, that water quality problems will require massive increases in investment, and 
that the price of oil and natural gas will increase sharply as resources become depleted. 
Against this background, pressure membrane processes for desalination and water 
treatment technology will become indispensable tools for the future of humanity. 
 
Many factors will dictate the most favorable type of water treatment technology, but 
reduced capital costs and high efficiency are likely to be very important. In recent years, 
engineering and commercial interests have increasingly focused on sustainable 
technologies with greater energy efficiency and reduced environmental impact. 
Membrane technologies achieve markedly higher energy efficiencies than thermal 
distillation, and furthermore have seen significant developments in recent years. They 
are becoming increasingly attractive for a range of existing and potential applications. 
Current trends are likely to enhance the commercial potential and areas of proliferation 
for membrane processes. In addition to desalination of seawater, membrane processes 
offer elegant solutions to many ecological and technological problems. The new 
generation of membrane based operations, particularly in biotechnology, medicine and 
in oil processing, demands the development of an entirely new paradigm for design and 
calculation of membrane materials and processes. 
 
The development of hybrid membrane processes for the treatment of biologically active 
materials, recovery of vaccines and antibiotics, purification of pharmaceuticals such as 
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interferon, isolation of cephalosporin from fermentation broth requires more 
comprehensive models and advanced methods of calculation. Complex inorganic 
membranes for the treatment of heated non-water media and aggressive fluids will 
require quantification and modeling of rheological anomalies and non-Newtonian 
behavior, along with temperature and concentration fields. 
 
In recent years, membrane-based processes have achieved surprisingly high diffusion 
rate in some of these very specialized applications, particularly when compared to 
conventional processes. Analysts have suggested that the present market for RO 
modules and equipment, currently estimated at US $914 million will grow by 8 per cent 
a year to more than US$ 1.3 billion by the year 2003. 
 
The viability of some membrane process applications have been hampered by the fact 
that many underlying models are based on unjustifiable simplifications and 
controversial assumptions within the framework of outdated methodological paradigms. 
This chapter  is a contribution to the solution of such problems, and presents a set of 
linked transport submodels for solution, membrane and gel phase. The submodels are 
based on more physically defensible premises and are as comprehensive as possible at 
this stage without experimentation. The submodels are presented as core algorithms for 
calculation of pressure-driven membrane process. 
 
2. General Framework and Formulation of the Problem 
 
An algorithm of any membrane process is a set of linked submodels describing mass 
and energy fluxes in both liquid phases and across membrane. Any flux is proportional 
to driving force and inversely proportional to the overall resistance. The driving force 
for pressure-driven processes is pressure difference. Transport of mass and mechanical 
energy can be expresses as follows: 
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These transport fluxes vary through the liquid and across the membrane. Main mass and 
energy transport fluxes are shown in Figure 1. The algorithm is based on the energy and 
mass balance equations. The balance equations have to be written for elementary 
control volume with constant mass and energy. The control volume being considered 
can be bounded by elementary parallelepiped, cylinder or fragment of intertubular 
channel. It is restricted by symmetry planes with no mass and energy transfer across 
them  
 
The algorithm should comprise the submodels for calculation of resistance and driving 
forces. Unlike processes in impermeable channels in membrane operations, longitudinal 
and transverse fluxes of mass and energy vary from point to point along a 
semipermeable surface is caused by the fact that the resistance and driving force do not 
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remain constant owing to transmembrane flux and hydraulic losses. These aspects have 
to be accounted for by modeling. For this purpose we have to consider individual 
submodels describing behavior and transport in liquid phases (feed and permeate), 
transmembrane flow and transport through gel layer, and its behavior. The first step is to 
outline a set of physical premises and assumptions underlying these transport 
submodels. 
 

 
 

Figure 1. Schematic diagram of transport in membrane channel. 
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