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Summary  
 
This chapter has considered approaches to modeling pressure-driven membrane 
processes accumulated in scientific literature. It covers submodels for hydraulic and 
mass transfer resistance in liquid phases, and also includes submodels for hydrodynamic 
and concentration fields and solutions describing phenomena of gel or cake 
accumulation on the membrane surface. Also discussed are transverse and axial 
subconstituents for velocity field in channels having symmetric and asymmetric 
configurations and various shapes (rectangular, cylindrical, etc.), and concentration 
submodels being received from reduced forms of convective diffusion equation. In 
particular, analytical and numerical solutions for concentration profiles in channels of 
various shapes are included. Approaches to modeling concentration field assuming 
concentration-dependent shear viscosity and shear-induced diffusivity are discussed. 
Finally, gel-polarization submodels and their modifications are covered. A submodel 
based on different assumptions and underlying premises is included and, in particular, 
approaches based on standard filtration theory, approaches considering lateral migration 
phenomena, stochastic approaches accounting individual trajectories and forces acting 
on the discrete particles are discussed.  
 
Considered hydrodynamic, concentration and gel submodels are going to be conjoined 
and built into a comprehensive algorithm. A review of published literature indicates that 
there are some oversimplifications which are not justifiable in some particular cases. 
The field equations for any membrane process are decoupled and drastically reduced 
assuming symmetric, steady, unidirectional, isothermal, laminar dilute flow with shear 
independent viscosity and diffusivity having constant membrane properties and ignoring 
influence of entry and exit regions. In particular, there is no reliable correlation for 
quantitative estimation of concentration layer and gel behavior. Mass transfer 
correlations for membrane systems were predominantly borrowed from studies of flow 
in non-permeable channels.  
 
1. Introduction 
 
Modeling hydraulic and mass transfer resistances is one of the central tasks in 
calculation of pressure-driven membrane processes. The procedure of calculation is 
rather complicated and multivariable being influenced by many factors. Hydraulic and 
mass transfer resistances are closely linked with the configuration of related fields. A 
schematic diagram of longitudinal development of concentration and hydrodynamic 
profile is shown in Figure 1.  
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Figure 1. Schematic diagram of concentration and hydrodynamic profiles. 
 

There is a plethora of approaches to modeling and various types of solutions, in 
particular, analytical and digital, exact and approximate ones. These operations are 
accompanied by concentration polarization and gel or cake accumulation.  
 
These undesirable phenomena are caused by unbalanced transport between bulk and 
surface. As a consequence of all these negative factors the transmembrane fluxes in 
commercial plants are only 2-10 per cent of the transmembrane fluxes for pure water 
(Matthiasson and Sivik 1980). 
 
Concentration and gel polarization submodels are going to be coupled and incorporated 
into a single algorithm, while equations describing transport within liquid phase have to 
be conjoined with those describing the growth of accumulated layer on the membrane 
surface (whether it is gel in the case of macromoleculars, or colloidal components, or 
cake, in the case of suspended systems).  
 
Traditional approaches are based on equations of continuity, fluid motion and 
convection-diffusion equations which describe transport in liquid phases under 
isothermal conditions: 
 
1. Continuity equation 
 

( ) 0u∂ρ ρ
∂τ

+ ∇ ⋅ =  (1) 

 
2. Fluid motion equation 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MEMBRANE  PROCESSES – Vol. II - Survey of Theoretical Approaches  to Modeling  Pressure-Driven Membrane Processes 
(Submodels for Transport in Phases) - Sergei P. Agashichev 

© Encyclopedia of Desalination and Water Resources (DESWARE) 

( ) ( ) ( )2u u u P g u∂ρ ρ ρ μ
∂τ

+ ⋅∇ = −∇ + + ∇  (2) 

3. Convection-diffusion equation  
 

( ) ( ) ( )c u c D c c u∂
+ ⋅∇ = ∇⋅ ∇ − ∇⋅

∂τ
 (3) 

 
Where the last term on the right-hand side is zero for an incompressible fluid 
 
Traditionally, the convection-diffusion equation is used as the principle equation where 
the axial and transverse velocity profiles are obtained either from prescribed functions 
or as a reduced form of the momentum equation.  
 
The classification of approaches and solutions can be subdivided and differentiated in 
accordance with underlying physical premises, simplifying assumptions, underlying 
mathematical formulations, procedures and mathematical techniques being used.  
 
There are different approaches to modeling concentration and hydrodynamic field 
namely: analytical and digital; exact and approximate. 
 
The momentum-based set of equations (eqs 1-2) can be used to produce a mathematical 
description of the hydrodynamic field. The computed or assumed velocity field is then 
inserted into the convection-diffusion equation to obtain the dissolved species 
distribution.  
 
In particular, approximation techniques were applied by Sherwood et al. 1965; Gill et al. 
1965; Johnson and McCutchan 1972; Hung and Tien 1976; Leung and Probstein 1979, 
and a finite difference method was used by Brian 1965; Singh and Laurence 1979. This 
approach is only justified if transmembrane flux does not disturb the bulk flow. 
 
2. Modeling Hydrodynamic Field 
 
The conventional approach to modeling hydrodynamic field is based on a combination 
of the Navier-Stokes equations and continuity equation which describe the motion of a 
viscous, incompressible, Newtonian fluid under isothermal conditions. The continuity 
equation for three-dimensional, three-directional Newtonian flow can be written as 
(Gerhard et al. 1992) 
 

( ) ( ) ( )yx zuu u
0

x y x

∂ ρ∂ ρ ∂ ρ∂ρ
+ + + =

∂τ ∂ ∂ ∂
 (4) 

 
Navier-Stokes equations for three-dimensional, three-directional flow in rectangular 
coordinates were represented as (Gerhard et al. 1992) 
 
X-component: 
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2 2 2
X X X X X X X

X Y Z X 2 2 2
u u u u u u uPu u u g

x y z x x y z

⎛ ⎞⎛ ∂ ∂ ∂ ∂ ⎞ ∂ ∂ ∂∂⎛ ⎞ ⎜ ⎟ρ + + + = − +ρ +μ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂τ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ∂ ∂ ∂⎝ ⎠
(5) 

 
Y- component: 
 

2 2 2yY Y Y Y Y Y
X Y Z Y 2 2 2

uu u u u u uPu u u g
x y z x x y z

⎛ ⎞∂⎛ ∂ ∂ ∂ ∂ ⎞ ∂ ∂∂⎛ ⎞ ⎜ ⎟ρ + + + = − +ρ +μ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂τ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ∂ ∂ ∂⎝ ⎠

 (6) 

 
Z- component: 
 

2 2 2
Z Z Z Z Z Z Z

X Y Z Z 2 2 2
u u u u u u uPu u u g

x y z x x y z

⎛ ⎞⎛ ∂ ∂ ∂ ∂ ⎞ ∂ ∂ ∂∂⎛ ⎞ ⎜ ⎟ρ + + + = − +ρ +μ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂τ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ∂ ∂ ∂⎝ ⎠
 (7) 

 
These equations can be transformed to other coordinates, such as cylindrical or 
spherical. No general analytical solution for the Navier-Stokes equations has been 
obtained.  
 
The momentum-based set of equations can be used to derive a mathematical description 
of hydrodynamic field to incorporate into the convection-diffusion equation. A 
perturbation solution of a simplified equation of motion describing laminar flow 
between two porous plates (or in a porous tube) and constant wall velocity (permeate 
flux) was given by Berman (1953).  Approximate solutions of problem-specific 
equations were reported by Gill et al. (1965) employing a series expansion, Kozinsky et 
al. (1970) using Bessel functions and Leung and Probstein (1979) resorting to the 
integral method. The "no slip" condition is usually invoked for the longitudinal velocity 
at the walls, however, Sparrow et al. (1972), Singh and Laurence (1979) and 
Kleinstreuer et al. (1982) investigated the effect of a thin moving layer in the porous 
walls.  
 
Belfort and Nagata (1985) proposed a survey of literature sources related to analysis of 
flow in porous channel. Models proposed in this section will be subdivided in 
accordance with configuration of channel and underlying assumptions.  
- 
- 
- 
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