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Summary 
 
Because of its intrinsic properties that well fit the requirements of process 
intensification strategy, membrane technology has well established applications in most 
of the industrial processes ranging from water desalination, wastewater treatments, 
agro-food, chemical and petrol chemical industry, etc. In particular, integrated 
membrane systems are today recognized as an interesting tool for a better rationalization 
of numerous industrial cycles. However, a good understanding of the materials 
properties and transport mechanisms, as well as the development of innovative 
materials with improved properties, is a key issue for the further applications of this 
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technology. Appropriate module design, hydrodynamic studies, and, in general, 
engineering analysis are also relevant aspects for their large-scale applications. 
 
In this work, an overview on the fundamentals and applications, including basic process 
design, modules configuration, and choice of materials, of some specific membrane 
processes (reverse osmosis, nanofiltration, ultrafiltration, microfiltration, electrodialysis, 
gas separation, pervaporation and vapor permeation, membrane contactors and catalytic 
membrane reactors), also integrated, is presented. 
 
1. Introduction 
 
A membrane is thin interphase that restricts the passage of different components in a 
specific mode and over a wide range of particle sizes and molecular weights, from ions 
to macromolecules.  
 
Synthetic membranes may be manufactured as solid or liquid phase, using organic or 
inorganic materials; they may be homogeneous or heterogeneous, symmetrical or 
asymmetrical, porous or dense, electrically neutral or charged; they may exhibit 
isotropic or anisotropic properties.  
 
The efficiency of a membrane basically is determined by two parameters: permeability 
(the rate at which a given component is transported through the membrane) and 
selectivity (the ability to separate in specific way a given component from others).   
 
The transport of different species through a membrane is a non-equilibrium process, and 
the separation of the different components is due to differences in their transport rate. 
 
In a membrane separation process, the transport rate of a component can be activated by 
various driving forces such as gradients in concentration, pressure, temperature or 
electrical potential. 
 
In many membrane operations more than one driving force is involved (e.g. pressure 
and concentration in gas separation, concentration and electrical potential in 
electrodialysis, etc.), but all these parameters can be included in one thermodynamic 
function, the electrochemical potential η  (which includes the chemical potential). For a 
single component i transported, the flux iJ  can be described by a semi-empirical 
equation [1]: 
 

i
i

d
J L

dx
η

= − ⋅  (1) 

 

where id
dx
η

 is the gradient in electrochemical potential of the component i  and L  is a 

phenomenological coefficient. 
 
In multi-component systems, driving forces and fluxes are interdependent, giving rise to 
complex interactions; not far from equilibrium, linear equations derived from 
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irreversible thermodynamics suggest that, 
 

i
i ij

d
J L

dx
η

= − ⋅  (2) 

 
where ijL  is a proportionality coefficients. 
Membrane can have two different configurations: flat sheet or tubular (Figure 1). 

 
Figure 1:  Scanning electron microscopy (SEM) images of the cross section of a flat 

sheet [2] (a) and of a hollow fiber [3] (b) membrane prepared from a modified 
polyetheretherketone known as PEEK-WC. 

 
Tubular membranes can be distinguished in: hollow fibers (fiber diameter below 0.5 
mm), capillary (fiber diameter comprised between 0.5 and 10 mm) and tubular (fiber 
diameter > 10mm). 
 
For applications on large scale, membranes are efficiently packed in small and compact 
units or modules. Different typologies of module design are today available: flat 
membranes climbed on plate-and-frame (Figure 2) and spiral-wound modules (Figure 
3); hollow fibers, capillary and tubular membranes assembled in modules having 
tubular geometry (Figure 4). 
 
Properties of the 
different module 
configuration 

 
Plate and 
frame 

 
Spiral 
wound 

 
Tubular 

 
Capillary 

 
Hollow 
fiber 

Representative 
packing density 
(m2/m3) 

100-400  300-1000 < 300 600-1200 Up to 
30000 

Capital cost high med-high High Low low 
Fouling tendency low to 

moderate 
med-high Low High very high 

Ease of cleaning good poor to 
good 

good to 
excellent 

Poor poor 

Operating cost high moderate High Low low 
 

Table 1: Properties of different module configurations 
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Plate-and-frame modules make use of flat-sheet membranes (in sandwich configuration) 
separated by support plates. These modules have low packing densities and are 
correspondingly expensive; they are for examples used to produce potable water in 
small-scale applications (Table 1). 
 
Spiral-wound modules allow the efficient packaging of flat-sheet membrane in a 
convenient cylindrical form. They consist in an arrangement of two rectangular 
membranes placed back to back and sealed on three sides. They are rolled around a 
collector tube connected to the fourth side which remains open. The solution to be 
treated is brought to one end of this cylinder and the product circulates between both 
membranes to the collector tube. A spiral-wound module is contained in a pressure 
vessel assembly, consisting of a cylindrical housing for the modules, a plumbing to 
connect the modules together in series and a plumbing to connect the feed inlet, product 
and concentrate outlet. These modules have a good density, but cleaning is difficult. 
Modules composed by tubular membranes generally contain up to 30 tubes, normally 
supported within stainless steel vessels; with this module design, the feed  and permeate 
channels can be easily cleaned. The major advantage of the tubular configuration is that 
the tube diameter is large enough to promote turbulent flow under most conditions 
without an excessive pressure drop. On the other hand, the low module packing density 
represents a serious disadvantage. 
 
Capillary and hollow fiber modules have the highest membrane surface area per 
element; however, due to the high density packaging, these modules appear to be very 
sensitive to the feed stream quality in terms of fouling potential. 

 
Figure 2: Scheme of a plate and frame membrane module 
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Figure 3: Scheme of a spiral wound module 
 

 
 

Figure 4: Scheme of tubular modules with different operative design 
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In a membrane separation process two main operative design are possible: cross-flow 
and dead-end  
A schematic representation of a cross-flow and a dead-end membrane separation stage 
is reported in figure 5. 

 
Figure 5: Schematic drawing of a membrane separation stage: cross-flow (a) and dead-

end (b) 
 
In the cross-flow mode, the feed stream flows parallel to the membrane and is separated 
into two streams: the retentate (or concentrate) and the permeate. 
 
In the dead-end the feed is forced perpendicularly the membrane leading to a 
concentrate phase (retentate) and a permeate. This operative modality is characterized 
by a higher tendency to fouling phenomena than cross-flow mode, and so cross-flow 
operation is generally preferred for industrial applications [4, 5]. 
 
If the product stream coming from a single-stage design does not meet the requested 
level of purity, the retentate and/or permeate stream has to be treated in a multi-stage 
membrane process or cascade operation (Figures 6 and 7).   

 
Figure 6: Two stage membrane separation system 
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Figure 7:  Two pass membrane separation system 

 
2. An overview on the most industrialized membrane separation processes and 
emerging applications  
 
Membrane operations, with their intrinsic characteristics of efficiency and operational 
simplicity, high selectivity and permeability for the transport of specific components, 
compatibility between different membrane operations in integrated systems, low 
energetic requirement, good stability under operative conditions, advanced control, easy 
scale-up and elevated flexibility, are today used  in a large number of industrial 
applications. 
 
The total annual market for membranes and membrane equipments is forecast to grow 
from $ 6.3 billion worldwide in 2004 to over $ 8.4 billion in 2007 [6]. The membrane 
industry is therefore an important economic factor; however, it is significant to realize 
that this market is extremely heterogeneous with a multitude of segments. Presently, 
water and wastewater treatment is the most relevant membrane application followed by 
food and beverage processing and drug and medical application. Catalytic membrane 
reactors, enantiospecific membrane separation processes and fuel cells can be 
considered emerging applications.  
 
The vast majority of membrane materials are nowadays polymeric, although the demand 
for non polymeric materials for special applications, including ceramic, metal and 
composite types, registers a rapid growth. Typical examples are zeolite membranes 
applied to promote the molecular separation and the catalytic act [7,8] ceramic 
membranes for high temperature applications [9], and perovskite type membranes for 
oxygen separation and catalytic reactors for syngas production and the partial oxidation 
of hydrocarbons [10, 11, 12, 13].  
 
The growing interest towards membrane science and technology is evident. At the 9th 
World Filtration Congress held in New Orleans (23-24 April, 2004 - Louisiana, USA) 
most of the scientific communications were held concerning applications of membrane 
systems in various production sectors. A confirmation of the industrial interest and 
strategic role for membrane operations, has been the presence of almost 200 exhibitors 
connected with the membrane world at the 9th edition of ACHEMA (19-24 May, 2003 - 
Frankfurt am Main, Germany), the world's largest exhibition for chemical engineering, 
environmental technology and biotechnology. A further evidence of the increasing 
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interest on membrane systems is the presence of numerous research projects in this 
field, approved, in progress or carried out in the latest years, with the financial support 
from the European Union. In particular, a Network of Excellence: “Expanding 
membrane macroscale applications by exploring nanoscale material properties 
(NanoMemPro)”, has been recently approved in the 6th Framework Programme (2002-
2006) of the EU, and is now in progress. Significant transformations in the European 
membrane industry are also confirming the maturity of the membrane operation in 
various industrial areas. Danish Separation Systems (DSS) acquisition by Alfa Laval 
(2002), Nadir and Microdyn merging in the Advanced Separation Technologies Group 
Membranes (2003), Osmonics and Ionics (2005) acquisition by General Electrics (GE) 
are some consolidations which are taking place in industry. 
 
- 
- 
- 
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filtration process]. 

47. Zaidi S.K., Kumar A. (2005). Experimental analysis of a gel layer in dead-end ultrafiltration of a 
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silica suspension, Desalination 172, 107-117. [Unstirred dead-end ultrafiltration of a silica suspension is 
studied using a fully retentive membrane, and the effects of operating conditions such as applied pressure 
and bulk concentration on specific resistance, thickness, porosity and silica concentration of gel are 
reported]. 

48. Christy C., Vermant S. (2002). The state-of-the-art of filtration in recovery processes for 
biopharmaceutical production. Desalination 147, 1-4. [This paper reviews the application of membranes 
from microporous, through ultrafiltration to nanofiltration/reverse osmosis types using actual examples of 
systems designed for cell harvesting, protein concentration, small molecule processing, virus removal and 
sterile filtration]. 

49. Bhanushali D., Kloos S., Kurth C., Bhattacharyya D. (2001). Performance of solvent-resistant 
membranes for non-aqueous systems: solvent permeation results and modeling. Journal of Membrane 
Science 189, 1–21. [A study on the development and experimental verification of membrane materials 
and transport models to explain permeation properties of non-aqueous solvent systems]. 

50. Strathmann, H. (1986). Electrodialysis, in Synthetic Membranes: Science, Engineering and 
Applications. (eds. P.M. Bungay, H.K. Lonsdale, and M.N.D. de Pinho), Holland: Reidel Publishing 
Company, Dordrecht. [A chapter that extensively describes the basic principles and applications of 
electrodialysis]. 

51. Pourcelly G. (2002). Electrodialysis with Bipolar Membranes: Principles, Optimization, and 
Applications. Russian Journal of Electrochemistry 38, 919–926 [This paper is an overview of the process 
of electrodialysis with bipolar membrane (EDBM) along with the different configurations]. 

52. Lee H.-J., Oh S.-J., Moon S.-H. (2003). Recovery of ammonium sulfate from fermentation waste by 
electrodialysis. Water Research 37, 1091–1099. [In this work, electrodyalisis experiments of the lysine 
fermentation waste were performed to generate demineralized feed and ammonium sulphate]. 

53. Lee H.-J., Sarfert F., Strathmann H., Moon S.-H. (2002). Designing of an electrodialysis desalination 
plant. Desalination 142, 267-286 [In this study the design and optimization of an electrodialysis plant to 
be used for brackish water desalination has been treated]. 

54. Al Madani H.M.N. (2003). Water desalination by solar powered electrodialysis process, Renewable 
Energy 28, 1915–1924 [This paper describes a water desalination process carried out by using an 
electrodialysis process operated with photovoltaic cells]. 

55. Hàbovfi V., Melzoch K., Rychtera M., Sekavovà B. (2004). Electrodialysis as a useful technique for 
lactic acid separation from a model solution and a fermentation broth. Desalination 162,361-372. [This 
presents a two-stage electrodialysis (ED) method used for lactic acid recovery]. 

56. Tongwen X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental 
protection—a review. Resources, Conservation and Recycling 37, 1–22.[A review on the use of 
electrodialysis in environmental applications] 

57. Tzanetakis N., Taama W.M., Scott K., Jachuck R.J.J., Slade R.S., Varcoe J. (2003). Comparative 
performance of ion exchange membranes for electrodialysis of nickel and cobalt. Separation and 
Purification Technology 30, 113-127. [The extraction of nickel and cobalt from their sulfate solutions by 
electrodialysis in a modified three compartment cell is described]. 

58. Pandey P., Chauhan R.S. (2001). Membranes for gas separation. Progress in Polymer Science 26, 
853-893. [A review on the preparation of membranes for gas separation and transport mechanisms]. 

59. Schaetzel P., Bendjama Z., Vauclair C., Nguyen Q.T. (2001). Ideal and non-ideal diffusion through 
polymers: Application to pervaporation. Journal of Membrane Science 191, 95-102. [A comparison 
between experimental diffusion data and theoretical models for ideal and non-ideal systems is reported].  

60. Yantovski E., Gorski J., Smyth B., Elshof J. (2004). Zero-emission fuel-fired power plants with ion 
transport membrane. Energy 29, 2077–2088. [This paper describes the zero emission, gas-fired power 
plant for electricity generation. Oxygen for combustion it is supplied by a ion transport membrane]. 

61. Wijmans J.G., Baker R.W. (1995). The solution-diffusion model: a review. Journal of membrane 
science 107, 1-21. [A review on solution-diffusion transport mechanism in reverse osmosis, 
pervaporation, gas separation and dialysis]. 
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62. Zhang S., Drioli E. (1995). Pervaporation membranes. Separation science and technology 30, 1-31. 
[This presents a review and discussion of some works on developments in pervaporation processes]. 

 

63. Lipnizki F., Field R.W., Ten P.-K. (1999). Pervaporation-based hybrid process: a review of process 
design, applications and economics. Journal of Membrane Science 153, 183-210. [This paper focuses on 
pervaporation-based hybrid processes, in particular pervaporation combined with distillation and with 
chemical reactors]. 

64. Jonquières A., Clément R., Lochon P., Néel J., Dresch M., Chrétien B. (2002) Industrial state-of-the-
art of pervaporation and vapor permeation in the western countries. Journal of Membrane Science 206, 
87-117. [This work reviews the trends of industrial pervaporation and vapour permeation in Europe and 
the USA]. 

65. Simmons V., Kaschemekat J., Jacobs M.L., Dortmundt D.D. (1994). Membrane systems offer a new 
way to recover volatile organic air pollutants. Chemical Engineering September issue. [This presents 
some industrial applications of vapor permeation for VOCs recovery] 

66. Baker R.W., Baker M. (1996). Improve monomer recovery from polyolefin resin degassing, 
Hydrocarbon processing March issue. [This presents membrane-based vapor separation processes for 
monomer recovery from polyolefin resins]. 

67. Criscuoli A., Curcio E., Drioli E. (2003). Polymeric membrane contactors. Recent Research. 
Developments in Polymer Science 7, 1-21. [A review on recent developments in polymeric membrane 
contactors]. 

68. Jing-Liang J.-L., Chen B.H. (2005). Review of CO2 absorption using chemical solvents in hollow 
fiber membrane contactors.  Separation and Purification Technology 41, 109-122. [A review on 
separation of CO2 from a gas stream, using a hollow fiber membrane contactor] 

69. Qi Z., Cussler E.L. (1985). Microporous hollow fibers for gas absorption. I. Mass transfer in the 
liquid. Journal of Membrane Science 23, 321–333. [This paper compares gas absorption in microporous 
hollow fiber membrane modules with that possible in packed towers. A particular attention is devoted to 
the mass transfer in the liquid phase]. 

70. Qi Z., Cussler E.L. (1985). Microporous hollow fibers for gas absorption. II. Mass transfer across the 
membrane. Journal of Membrane Science 23, 333–345. [This paper compares gas absorption in 
microporous hollow fiber membrane modules with that possible in packed towers. A particular attention 
is devoted to the mass transfer across the membrane]. 

71. Gabelman A., Hwang S.-T. (1999). Hollow fibre membrane contactors. Journal of Membrane Science 
159, 61–106. [A review on of hollow fiber membrane contactors, including operating principles, relevant 
mathematics, and applications]. 

72. Drioli E., Jiao B.L., Calabrò V. (1992). The preliminary study on the concentration of orange juice by 
membrane distillation. Proceeding of International Society of Citriculture 3, 1140-1144. [This presents a 
review of the application of membrane distillation in orange juice concentration]. 

73. Schofield R.W., Fane A.G., Fell C.J.D. (1987). Heat and mass transfer in membrane distillation. 
Journal of Membrane Science 33, 299-313. [In this paper equations for heat and mass transfer in 
membrane distillation have been developed and tested experimentally]. 

74. Pena L., Godino M.P., Mengual J.I. (1998). A Method to Evaluate the Net Membrane Distillation 
Coefficient. Journal of Membrane Science 143, 219-233. [This presents a method to evaluate the net 
membrane distillation coefficient. This method emphasizes the influence of the unstirred boundary layers 
on the membrane distillation processes]. 

75. Martinez L., Vazquez-Gonzalez M.I. (2000). A method to evaluate coefficients affecting flux in 
membrane distillation. Journal of Membrane Science 173, 225-235. [This presents a method to evaluate 
the membrane mass transfer coefficient, the membrane heat transfer coefficient and the boundary layer 
heat transfer coefficient in a membrane distillation system] 

76. Ugrozov V. V., Elkina I. B. (2002). Mathematical modeling of influence of porous structure a 
membrane on its vapour-conductivity in the process of membrane distillation. Desalination  147, 167-
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171. [In this work the influence of membrane porous structure on vapor conductivity coefficient in 
membrane distillation process was studied theoretically using the pore network as a model of porous 
medium]. 

77. Curcio E., Di Profio G., Drioli E. (2002). Membrane crystallization of macromolecular solutions. 
Desalination 145, 173-177. [In this work the membrane crystallization technique was employed to obtain 
protein crystals from supersaturated solutions]. 

78. Di Profio G., Curcio E., Drioli E. (2003). Membrane crystallization of lysozyme: kinetic aspects. 
Journal of Crystal Growth 257, 359-369. [This presents a kinetic study on lysozime crystallization in a 
membrane crystallizer]. 

79. Curcio E., Di Profio G., Drioli E. (2003). Recovery of fumaric acid by membrane crystallization in 
the production of L-malic acid. Separation and Purification Technology 33, 63-73. [A study on the 
realization of a separation unit based on a membrane crystallizer aiming to recover the unreacted fumaric 
acid leaving a biocatalytic membrane reactor for the production of L-malic acid].  

80. Di Profio G., Perrone G., Curcio E., Cassetta A., Lamba D., Drioli E. (2005). Preparation of Enzyme 
Crystals with Tunable Morphology in Membrane Crystallizers. Industrial and Engineering Chemistry 
Research 44, 10005-10012. [This describes the trypsins crystallization by using membrane crystallization 
techniques, both in static and dynamic configurations]. 

81. Lynch M.J., Griffin W.C. (1974). Food emulsions, in: Emulsions and Emulsion Technology, 
Surfactant Science Series vol. 6 (1), Chapter 5, 249-289. Marcel Dekker, New York. [This presents an 
overview on emulsion technology if food applications] 

82. Walstra P., Smulders P.E.A. (1998). Emulsion formation, in Modern Aspects of Emulsion Science. 
B.P. Binks (Ed.), The Royal Society of Chemistry: Cambridge (UK). [This presents data about energy use 
in emulsion formation] 

83. Nakashima T., Shimizu M., Kukizaki M. (1994). Mono-dispersed single and double emulsions and 
method of producing same. United States Patent n. 5,326,484. [A patent on the use of membrane 
emulsification technique to obtain emulsions characterized by uniform droplets and low energy 
consumption] 

84. Giorno, L.; Li, N.; Drioli, E. (2003). Preparation of oil-in-water emulsions using polyamide 10 kDa 
hollow fiber membrane. Journal of Membrane Science 217, 173–180. [In this paper asymmetric 
polyamide hollow fibre membranes have been used to prepare oil-in-water emulsions]. 

85. Suzuki K., Fujiki I., Hagura Y. (1998). Preparation of High Concentration O/W and W/O Emulsions 
by the Membrane Phase Inversion Emulsification Using PTFE Membranes. Food Science and 
Technology Research 5, 234-238. [In this paper PTFE membranes have been used to prepare corn oil-in-
water and water/corn oil emulsions]. 

86. Katoh R., Asano Y., Furuya A., Sotoyama K., Tomita M.(1996). Preparation of food emulsions using 
a membrane emulsification system. Journal of Membrane Science. 113, 131-135. [A study on the effect 
of the flux in membrane emulsification process on the droplets diameter]. 

87. De Luca G., Sindona A., Giorno L., Drioli E. (2004). Quantitative analysis of coupling effects in 
cross-flow membrane emulsification. Journal of Membrane Science 229, 199–209. [A theoretical and 
experimental study on effects concerning droplet growth and detachment from membrane pores during 
membrane emulsification process]. 

88. Schroder V., Schubert H. (1999). Production of emulsions using microporous, ceramic membranes. 
Colloids and Surfaces A 152, 103-109. [This presents an experimental study on emulsification using 
ceramic membranes in terms of droplet size and disperse phase flux as a function of the main parameters 
of the process, for example. dynamic interfacial tension of the emulsifier, transmembrane pressure and 
wall shear stress]. 

89. Abrahamse A.J., Van der Padt A., Boom R.M. (2004). Status of cross-flow membrane emulsification 
and outlook for industrial applications. Journal of Membrane Science 230, 149-159. [In this paper the 
effects of membrane parameters on the disperse phase flux in membrane emulsification experiments are 
estimated] 

90. Vankelecom I. F. J., Jacobs P. A. (2000). Dense organic catalytic membranes for fine chemical 
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synthesis]. Catalysis Today 56, 147-157. [This a work on the heterogenization of homogeneous and 
heterogeneous catalysts in dense PDMS membranes and their application in catalytic membrane reactors]. 

91. Bonchio M., Carraro M., Scorrano G., Fontananova E., Drioli E. (2003). Heterogeneous 
Photooxidation of Alchols in Water by Photocatalytic Membranes Incorporating Decatungstate. Advanced 
Synthesis & Catalysis 345, 1119-1126. [A study on the heterogenization of decatungstate in dense and 
porous polymeric membranes, and their use in the photooxidation reactions]. 

92. Li N., Giorno L., Drioli E. (2003). Effect of Immobilization Site and Membrane Materials on 
Multiphasic Enantiocatalytic Enzyme Membrane Reactors. Annals of New York Academy of Sciences 984, 
436-452. [An experimental study on the optical resolution of racemic naproxen methyl ester with crude 
lipase immobilized in a multiphasic enantiocatalytic enzyme membrane reactor]. 

93. Brockmann M, Seyfried CF. (1997). Sludge activity under the conditions of crossflow microfiltration. 
Water Science and Technology 35, 173-181. [A study on a pilot plant anaerobic pretreatment of potato 
starch wastewater]. 

94. Shim J.K., Yoo Y.-K., Lee Y.M. (2002). Design and operation considerations for wastewater 
treatment using a flat submerged membrane bioreactor. Process Biochemistry 38, 279-285 [This presents 
an investigation on combining a flat submerged membrane with a biological reactor for synthetic 
wastewater treatment]. 

 

95. Wenten I.G. (2002). Recent development in membrane science and its industrial applications. Journal 
of Science Technology 24, 1009-1024. [A study on industrial applications of membrane processes] 

96. Ebrahim S., Bou-Hamed S., Abdel-Jawad M., Burney N. (1997). Microfiltration system as a 
pretreatment for RO units: Technical and economic assessment. Desalination 109, 165-175. [This paper 
presents the results of a research project on the use of microfiltrationunit as a pre-treatment technique for  
a sweater reverse osmosis system]. 

97. Bonnelye V., Sanz M.A., Durand J.-P., Plasse L., Gueguen F., Mazounie P. (2004). Reverse osmosis 
on open intake seawater: pre-treatment strategy. Desalination 167, 191-200. [This paper is focussing on 
two case studies of seawater pre-treatment upstream reverse osmosis desalination. Depending on the 
water quality, the pre-treatment uses different technology strategies, conventional pre-treatment 
(coagulation and direct filtration on dual media filters) and innovative technologies (high rate dissolved 
air flotation, ultrafiltration and microfiltration)] 

98. Drioli E., Criscuoli A., Curcio E. (2002). Integrated membrane operations for seawater desalination. 
Desalination 147, 77-81. [This presents a study on the advantages of integrated membrane system for 
seawater desalination] 

99. Drioli E., Curcio E., Criscuoli A., Di Profio G. (2004). Integrated membrane system for recovery of 
CaCO3  NaCl and MgSO4·7H2O from nanofiltration retentate. Journal. of Membrane Science 239, 27-38 
[An experimental study on an integrated membrane system for recovery of dissolved salts present, at low 
concentration, in typical feed streams to desalination plants]. 

100. Jiao B., Cassano A., Drioli E. (2004). Recent advances on membrane processes for the concentration 
of fruit juices, Journal of Food Engineering, Journal of Food Engineering 63, 303-324. [Advances and 
developments of the use of membrane processes (also integrated) for concentrating fruit juice are 
reviewed and discussed in this paper. 

101. Rao M.A., Acree T.E., Cooley H.J., Ennis R.W. (1987). Clarification of apple juice by hollow fiber 
ultrafiltration: fluxes and the odor-active volatiles. Journal of Food Science 52, 375-378 [A study on fresh 
apple juice clarification in a pilot scale ultrafiltration (UF) unit, with membranes made of polysulfone and 
polyamide and plate and frame and vacuum drum filters]. 

102. Cassano A., Molinari R., Romano M. E. Drioli (2001). Treatment of aqueous effluents of the leather 
industry by membrane processes. Journal of Membrane Science 181, 111-126. [An overview on the 
potentiality of membrane processes in the treatment of aqueous solutions coming from the leather 
industry]. 
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