CONTROL VALVE POSITIONERS

P. Muroni

Parcol, Italy

R. Borsani

Fisia Italimpianti, Genova, Italy

Keywords : Electropneumatic positioner, Pneumatic positioner, Positioner Operation, Floating Coil, SOLG

Contents

- 1. Introduction
- 2. Pneumatic Positioner Operation
- 3. Electropneumatic Positioner
- 3.1. Floating Coil Type
- 3.2. Torque Motor
- 4. Selection of Positioner
- 4.1. Signal Source: Pneumatic or Electric
- 4.2. Supply and Signal Values
- 4.3. Air Consumption
- 4.4. Speed of Response
- 4.5. Response to External Disturbances
- 4.6. Static Gain
- 4.7. Linearity, Hysteresis, Dead-Band, Repeatability
- 4.8. Dynamic Response
- 4.9. Protection and Installation
- 4.10. Interchangeability
- 5. Use of Positioner
- 5.1. For Accurate Valve Plug Positioning
- 5.2. To Improve Actuator Performance
- 5.3. To Increase Pneumatic Actuator Speed of Response
- 5.4. To Operate Double-Acting Actuators
- 5.5. For Split-Range Operations

5.6. To Change Control Valve Flow Characteristics

Glossary

Bibliography and Suggestions for further study

Summary

The constructional and operational features of pneumatic and electropneumatic positioners for valve actuators are described and guidelines for their selection are outlined.

1. Introduction

Positioners are provided as accessories to control valve actuators to ensure their proper

operation. In their absence it is essential to operate the actuator in accordance with a different powering arrangement by the controller.

Positioners can be classified into pneumatic, electropneumatic or electronic type and, in each case, they are intended to perform the following functions:

- To receive the signal coming from the controller;
- To compare this signal with the valve stem position (feedback);
- To drive the stem displacement by acting on the actuator until the correct stem position is reached.
- -
- _
- 7
- TO ACCESS ALL THE **11 PAGES** OF THIS CHAPTER, Visit: <u>http://www.desware.net/DESWARE-SampleAllChapter.aspx</u>

Bibliography and Suggestions for further study

Füssel D., Ballé P., Isermann R. (1997). *Closed-loop fault diagnosis based on a nonlinear process model and automatic fuzzy rule generation*, Proceedings of the IFAC SAFEPROCESS 97, pp. 359-364.

Isermann R. (1997). Supervision, fault detection and fault diagnosis methods - an introduction, Control Engineering Practice 5(5), pp. 639-652.

Isermann R., Ernst S., Nelles O. (1997). *Identification with dynamic neural networks architectures, comparisons, applications* _____, IFAC Symposium on System Identification, pp. 997-1022, Kitakyushu: Japan.

Krishnaswami V., Rizzoni G. (1994). A survey of observer based residual generation for FDI, Proceedings of the SAFEPROCESS 94, pp. 34-39.

Lloyd S G (1970) Guidelines for the use of positioners and boosters. Instrument technology ???.

Lyons J L (1982) Lyons' Valve Designer's Handbook.

Moseler O., Straky H. (2000). *Fault Detection of a Solenoid Valve for Hydraulic Systems in Vehicles*, IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Budapest: Hungary.

Muroni P (1975) La rumorosità delle valvole di regolazione. Tecniche dell'Automazione nn. 6/7/8/9.

Muroni P (1989) II coefficiente di recupero delle valvole di regolazione. Tecniche dell'Automazione 5.

N. G. Hingorani, L. Gyugyi (2000); Understanding FACTS - Concepts and Technology of Flexible AC Transmission Systems, IEEE Press IEEE Order No. PC5713 [This book gives a comprehensive treatment of FACTS]

Nelles O. (2000). Nonlinear System Identification, Springer Verlag, Heidelberg, Germany

Nelles O., Isermann R. (1996). *Basis function networks for interpolation of local linear models*, IEEE Conference on Decision and Control, pp. 470-475, Kobe: Japan.

Pfeufer T., Ayoubi M. (1995). *Fault diagnosis of electromechanical actuators using a neuro-fuzzy network*, GI-Workshop "Fuzzy-Neuro-Systeme", pp. 231-239, Darmstadt: Germany.

Pfeufer T., Isermann R. (1996). *Intelligent electromechanical servo systems*, IFAC World Congress, vol. J, pp. 83-88, San Francisco: USA.

Straky H., Weispfenning Th. (1999). *Model Based Data Processing in a Mechatronic System*, European Automotive Congress EAEC '99, Barcelona: Spain..

Straky H., Weispfenning Th., Isermann R. (1999). *Model Based Fault Detection of Hydraulic Brake System Components*, European Control Conference ECC '99, Karlsruhe: Germany.

Y. Bao; (1994) Control of Inter-Area Oscillations in Power Systems Using Regularity Concepts; PhD-Thesis Swiss Federal Institute of Technology Zurich, Switzerland, Diss. ETH No. 10843 [The thesis treats interconnected power systems and works out the properties of regular systems and of special configurations which exhibit inter-area oscillations]